Massimo Trioni's scientific contributions
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publication (1)
A framework for the power management in a smart campus environment is proposed, which enables the integration of renewable local energy sources, storage banks and controllable loads, and supports Demand Response with the electricity grid operators. We describe the system components, including an Energy Management System for the optimal scheduling o...
Citations
... The algorithm developed in [40] uses Linear Programming, whose solutions need to be rounded to integral values and can have large errors (unbounded integrality gap). The second approach is to provide computationally expensive exact solutions, for example, [12,30,7,49,10,5], where the authors use Integer/Mixed Integer Linear/Nonlinear Programming for their algorithm. Previously, we developed polynomial-time approximation algorithms for "sustainable" demand response in which aggregate curtailment was bounded over intervals of the DR event [21,22]. ...