Mary Ann Clarke’s research while affiliated with West Virginia University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (11)


Design of a Compact Quarter Wave Coaxial Cavity Resonator for Plasma Ignition Applications
  • Article

August 2011

·

442 Reads

·

11 Citations

International Journal of Microwave and Wireless Technologies

·

Mary Ann Clarke

·

Atmospheric and higher pressure RF and microwave plasma sources have numerous applications including material processing and spectroscopy. More recently, advantages in using such discharges for combustion ignition are being investigated. A particularly simple and compact microwave discharge generating device is the quarter wave coaxial cavity resonator (QWCCR). This paper presents a new, compacted design of such a device. A simple approximate analysis of the quality factor, Q, which is a measure of the resonant electromagnetic potential step-up capability is given, and compared to experimentally measured quality factors showing reasonable agreement. Analytic results indicate that the foreshortened folded cavity quality factors are comparable to tapered coaxial cavity designs.



Lift Augmentation for Vertical Axis Wind Turbines

December 2010

·

105 Reads

·

8 Citations

The concept of harnessing wind power has been around for centuries, and is first recorded by the Persians in 900 AD. These early uses of wind power were for the processing of food, particularly grinding grains, and consisted of stationary blades around a horizontal axis, the precursor to today’s horizontal axis wind turbines (HAWT). Technology for these wind mills was essentially the same until the 1930’s when advances in aircraft propeller theories were applied to the blades of the turbine. During this development period, which has since remained basically unchanged, the design push was for increasingly larger propellers requiring heavy and costly transmissions, generators, and support towers to be installed. An alternative concept to the HAWT was developed by Georges Darrieus [5], which utilized a vertical shaft and is known as a vertical axis wind turbine (VAWT). The scientific development of the concept did not gain strong attention until the 1970’s due to the perceived low efficiency of this style. This perception was due in part to the portion of the blade’s rotary path that is adverse to the generation of power. This efficiency loss can be minimized by the mechanical movement of the blade, relative to the airflow during the upwind portion of the blades’ rotational path. Since, circulation control can alter the forces generated by an airfoil, it could be used to increase the efficiency of a VAWT by increasing the torque produced on the downwind portion of the path, while removing the need for a physical change in angle of attack. With the recent upturn in petroleum costs and global warming concerns, interest in renewable energy technologies have been reinvigorated, in particular the desire for advanced wind energy technologies, including the application of lift augmentation techniques. One of these techniques is to utilize circulation control to enhance the lifting capacity of the blades based on the location of the blade in the turbine’s rotation. Though this technology can be applied to any wind turbine, whether horizontal or vertical axis, this paper focuses on the application of circulation control for VAWT’s due primarily to reduced hardware complexities and to increase the performance of this design thus helping to level the playing field between the two styles. This performance enhancement coupled with the ability to locate the primary components near the ground allows for easier installation, troubleshooting, maintenance, and future improvement of the circulation control sub-system. By varying the circulation control performance with the blade position, the coefficient of performance, Cp, of the wind turbine can be altered. This variation in Cp resembles a change in the effective solidity factor, the non-dimensional characteristic that accounts for the number of turbine blades, chord length, and turbine radius. The solidity factor is typically used in the design of a wind turbine with its peak performance occurring at various tip speed ratios, at different solidity factors. Prior to the construction of physical models, analytical methods, namely a vortex model, was used to estimate the performance enhancement potential of the blade force augmentation via circulation control. These results were then used to construct and test a wind tunnel blade section model to obtain lift and drag values for a full range of rotational angles. These results were then supplied to the vortex model which indicated that through the addition of circulation control to the blades of a vertical axis wind turbine an approximately 20% improvement in the annual energy production, and consequently the capacity factor, could be achieved.





Pitch Stability of an Unpowered Ground Effect Vehicle

January 2010

·

35 Reads

·

3 Citations

The ground effect regime was first utilized in the early 1900’s with the advent of transatlantic flight. Aircraft such as the Dornier DO-X would fly close to the surface of the water in order to increase its payload and range. Since that time, research has been periodic with the largest resurgence of ground effect interest in the 1960’s. The Russian government became involved in developing aircraft designed solely for ground effect flight. The design of these aircraft was difficult due to the inherent problems that exist within ground effect. There are natural instabilities that occur, especially in the longitudinal direction that are antagonized by shifting payload weights. Past researchers have handled the unique design requirements of ground effect through the usage of high-tail devices which operate outside of ground effect and power augmented ground effect which artificially generates the lift force through the use of thrust vectoring. The Center for Industrial Research Applications (CIRA) has developed a single passenger, unpowered, subsonic aircraft that relies on gravitational forces for momentum. AirRay combines the benefits of ground effect i.e. the increased lift and decreased induced drag, with a unique approach to maintaining stability. The design of AirRay faced many challenges as a result of flying in the ground effect regime, similar to those found in the prior efforts. These include natural instabilities, primarily in the longitudinal direction, that cause the glider to want to pitch up. In addition the size requirements for a single rider to maximize maneuverability, as well as the potential for updrafts on a downhill slope are added constraints to the design of the ground effect vehicle. These issues, and others, are the subject of current study. This paper has focused on the most important aspect of the design, longitudinal stability. This research has shown positive results with respect to the effectiveness of slots, on passively controlling the movement of the center-of-pressure at varying angles of attack. The 40 degree slot located at 20% of the chord line was most advantageous in stabilizing movement. These results indicate a craft can be designed that can be stable and function in the majority of the flight conditions that have been specified.


Circulation Control Span-Wise Blowing Location Optimization for a Helicopter Rotor Blade

January 2010

·

77 Reads

·

1 Citation

Circulation control technology has proven itself useful in the area of short take-off and landing (STOL) fixed wing aircraft by decreasing landing and takeoff distances, increasing maneuverability and lift at lower speeds. The application of circulation control technology to vertical take-off and landing (VTOL) rotorcraft could also prove quite beneficial. Successful adaptation to helicopter rotor blades is currently believed to yield benefits such as increased lift, increased payload capacity, increased maneuverability, reduction in rotor diameter and a reduction in noise. Above all, the addition of circulation control to rotorcraft as controlled by an on-board computer could provide the helicopter with pitch control as well as compensate for asymmetrical lift profiles from forward flight without need for a swashplate. There are an infinite number of blowing slot configurations, each with separate benefits and drawbacks. This study has identified three specific types of these configurations. The high lift configuration would be beneficial in instances where such power is needed for crew and cargo, little stress reduction is offered over the base line configuration. The stress reduction configuration on the other hand, however, offers little extra lift but much in the way of increased rotor lifespan and shorter rotor length. Finally, the middle balanced configuration offers a middle ground between the two extremes. With this configuration, the helicopter benefits in all categories of lift, stress reduction and blade length reduction.


Effect of Leading Edge Blowing Slots on Stall Angles of a 10:1 Elliptical Airfoil

January 2010

·

37 Reads

Traditional uses of circulation control have been studied since the early 1960’s and have been developed primarily using trailing edge slots over a rounded trailing edge in order to take advantage of the Coandă effect. The leading edge activated slots allow jets of air to enter the freestream flowing around the airfoil thus enhancing the energy of the lift force. The main purpose of circulation control for fixed wing aircraft is to increase the lifting force when large lifting forces and/or slow speeds are required, such as at take-off and landing. While there is a significant increase in the lifting forces achievable through the use of circulation control, there is also an inherent increase in the drag force on the airfoil (Abramson, 2004, Loth, 1976, 1984). Current effects of circulation control on stall angles of airfoils are not well documented and thus needs to be studied. Stall occurs when a sudden reduction in lift occurs caused by a flow separation between the incoming air flow and the lifting surface. The angle at which this happens is commonly called the critical angle of attack, and is typically between eight and twenty degrees depending on the wing profile, aspect ratio, camber, and planform area. For this study, a 10:1 aspect ratio elliptical airfoil with a chord length of 11.8 inches and a span of 31.5 inches was inserted into the West Virginia University Closed Loop Wind Tunnel and was tested at varying wind speeds (80, 100, and 120 feet per second), angle of attack (zero to sixteen degrees), and blowing coefficients, ranging from 0.0006 to 0.0127 depending on internal plenum pressure. By comparing the non-circulation controlled wing with the active leading edge slot circulation control data, a trend was found as to the influence of the circulation control exit jet on the stall characteristics of the wing. For this specific case, when the circulation control is in use on the 10:1 elliptical airfoil, the stall angle decreases, from eight degrees to six degrees, while providing up to a 46% increase in lift coefficient.


Elliptic Airfoil Stall Analysis With Trailing Edge Slots

January 2010

·

64 Reads

Circulation control (CC) is a high-lift methodology that can be used on a variety of aerodynamic applications. This technology has been in the research and development phase for over sixty years primarily for fixed wing aircraft where the early models were referred to as “blown flaps”. Circulation control works by increasing the near surface velocity of the airflow over the leading edge and/or trailing edge of a lifting surface This phenomenon keeps the boundary layer jet attached to the wing surface thus increasing the lift generated on the surface. The circulation control airflow adds energy to the lift force through conventional airfoil lift production and by altering the circulation of stream lines around the airfoil. For this study, a 10:1 aspect ratio elliptical airfoil with a chord length of 11.8 inches and a span of 31.5 inches was inserted into the West Virginia University Closed Loop Wind Tunnel and was tested at varying wind speeds (80, 100, and 120 feet per second), angle of attack (zero to sixteen degrees), and blowing coefficients, ranging from 0.0006 to 0.0127 depending on plenum pressure. By comparing the non-circulation controlled wing with the active circulation control data, a trend was found as to the influence of circulation control on the stall characteristics of the wing for trailing edge active control. For this specific case, when the circulation control is in use on the 10:1 elliptical airfoil, the stall angle decreased, from eight degrees to six degrees, while providing a 70% increase in lift coefficient. It should be noted that due to the trailing edge location of the circulation control exit jet, a “virtual” camber is created with the free stream air adding length to the overall airfoil. Due to this phenomena, the actual stall angle measured increased from eight degrees on the un-augmented airfoil, to a maximum of twelve degrees.


Citations (5)


... , [32] . .......... 7 Figure 2.3 Darrieus vertical-axis wind turbine adapted from [33], [35], [36], [39]. [33], [35], [36], [39]. ...

Reference:

Vibration-based condition monitoring of wind turbine blades
Lift Augmentation for Vertical Axis Wind Turbines
  • Citing Article
  • December 2010

... Serendipity is a phenomenon that describes the discovery of a concept by chance (Darbellay 2020). It contributes to innovation and invention (Ishikawa 2010), and an example of serendipitous discovery is the 'ground effect' in aircraft (Hubbell et al. 2010). In addition, an EDP could result from apophenia -a phenomenon that describes the natural inclination to produce a meaningful and valuable concept through invisible connections of random or unrelated data (Thaler 2020). ...

Pitch Stability of an Unpowered Ground Effect Vehicle
  • Citing Conference Paper
  • January 2010

... Rotor solidity τ ij Shear stress tensor ω Specific dissipation rate of turbulent kinetic energy (1/s) Ω Turbine's rotational velocity (rad/s) [4] Tangential air jet to improve the aerodynamic efficiency Greenblatt et al. [5] Plasma actuators at the leading-edge for active flow control Horizontal axis turbine Baleriola et al. [6] Experimental study on the flow control at the trailing edge using plasma actuators Jukes [7] DBD vortex generators along the blade span Dumitrache et al. [8] Tangential blow of a small high-velocity jet over a highly curved surface Sankar et al. [9] Numerical assessment of circulation control under yawed flow conditions Aircraft/Rotorcraft Kanistras et al. [10] Circulation control wing for unmanned aerial vehicles Kweder et al. [11] Applications of circulation control were reviewed Didion et al. [12] Circulation control during vertical take-off and landing Biomechanics Throckmorton et al. [13] Pitch-adjusting blade geometries for intravascular blood pumps ...

Circulation Control Span-Wise Blowing Location Optimization for a Helicopter Rotor Blade
  • Citing Conference Paper
  • January 2010