Mark Bates's scientific contributions
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (14)
Widefield imaging photobleaching curves for pcFPs. Photobleaching curves of the green state (left panels) and the red state (right panels) of pcFP-H2B fusions expressed in HeLa S3 cells with widefield illumination. Each curve represents the photobleaching behavior of an individual cell and the darker colored curve is the average. Average time when...
Confocal imaging photobleaching curves for pcFPs. Photobleaching curves of the green states (left panels) and the red states (right panels) of pcFP-H2B fusions expressed in HeLa S3 cells with confocal illumination. Each curve represents the photobleaching behavior of an individual cell and the dark colored curve is the average. Average time for the...
Expression and maturation of new pcFPs expressed in E. coli. (A) Maturation of mClavGR variants and mEos2 at 37°C. The maturation profiles of mMaple (green) and mClavGR2 (dark red) can be fit as monoexponential curves with time constants of 39 min and 29 min, respectively. Under the conditions of this experiment, mEos2 (orange) is approximately 50%...
Cluster analysis of pcFP localizations. The percentage of localizations grouped into clusters (<30 nm interlocalization spacing) for cytoplasmically expressed pcFPs. Over 50% of mMaple and over 80% of mClavGR2 and mEos2 proteins do not have a second localization within 30 nm.
(TIF)
Swarm plate assays to assess the function of CheW fusions. Approximately 2 µl of ΔcheW E. coli transformed with a plasmid encoding a FP-CheW fusion were placed on T-broth soft agar swarm plates. The ability for the E. coli to undergo chemotaxis was assessed by measuring the diameter of the swarm ring 5 h after the bacteria were placed on the agar a...
Number of photons emitted by pcFPs fused to CheW. Representative distributions of the number of photons emitted in the red fluorescent state by CheW fusions to (A) mMaple (B) mClavGR2 and (C) mEos2. Only localizations emitting more than 300 photons were included.
(TIF)
Gel filtration chromatography of mMaple and mClavGR2. Both mClavGR2 (injection concentration of 0.5 mM) and mMaple (injection concentration of 0.5 mM) purified from E. coli by Ni2+-NTA affinity chromatography show an additional peak at 63 min. This peak is diminished in size for mMaple relative to mClavGR2 (6.7% vs. 25.8% of monomer peak area). Whi...
Reversible photoswitching of photoconverted (red) mMaple. (A) Photoconverted mMaple can be further photoconverted to a “dark” non-fluorescent state by illumination with green light. (B) The dark state of the photoconverted mMaple reversibly photoswitches back to the red fluorescent state as seen by changes in the absorbance spectra in response to d...
3D animation of a SIM reconstruction of a live E. coli expressing GFP-CheW (as shown in
Fig. 3E). The cellular membrane was stained with FM4-64. Scale bar is 500 nm.
(MOV)
Photostability and green-state brightness characterization of pcFP-actin fusions in mammalian cells. Representative widefield fluorescence images of U2OS cells transfected with plasmids encoding either mMaple-actin (A), mClavGR2-actin (B), or mEos2-actin (C). The cells were stained with phallodin as a comparison (insets in A–C). (D) All pcFP-actin...
(f-)PALM/STORM analysis of purified pcFPs. (A–B) Composite images of purified (A) mMaple and (B) mEos2 proteins immobilized on a coverslip. Localizations are represented as normalized 2D Gaussian peaks (right half) and represented as single localizations and clustered markers (<30 nm interlocalization spacing) (left). Scale bars are 2 µm and 50 nm...
pH titrations of pcFP variants. For each variant the fluorescent intensity at pH values ranging from 5 to 10 was determined by diluting purified protein into concentrated buffer adjusted to the appropriate pH. For the green state (green line, diamond symbols), the λex = 440 nm and the λem = 530 nm. For the red state (red line, triangle symbols), th...
3D animation of a SIM reconstruction of many live E. coli cells expressing mMaple-CheW (top left channel) stained with the live-cell membrane stain FM4-64 (top right channel) (as shown in
Fig. 3C–D). The channels have been combined in the bottom right panel. Scale bar is 1 µm.
(MOV)
Characterization of photobleaching rates for pcFP-H2B fusions in live cells.
(DOC)