March 2025
·
22 Reads
The double-stranded RNA editing enzyme ADAR1 connects two forms of genetic programming, one based on codons and the other on flipons. ADAR1 recodes codons in pre-mRNA by deaminating adenosine to form inosine, which is translated as guanosine. ADAR1 also plays essential roles in the immune defense against viruses and cancers by recognizing left-handed Z-DNA and Z-RNA (collectively called ZNA). Here, we review various aspects of ADAR1 biology, starting with codons and progressing to flipons. ADAR1 has two major isoforms, with the p110 protein lacking the p150 Zα domain that binds ZNAs with high affinity. The p150 isoform is induced by interferon and targets ALU inverted repeats, a class of endogenous retroelement that promotes their transcription and retrotransposition by incorporating Z-flipons that encode ZNAs and G-flipons that form G-quadruplexes (GQ). Both p150 and p110 include the Zβ domain that is related to Zα but does not bind ZNAs. Here we report strong evidence that Zβ binds the GQ that are formed co-transcriptionally by ALU repeats and within R-loops. By binding GQ, ADAR1 suppresses ALU-mediated alternative splicing, generates most of the reported nonsynonymous edits and promotes R-loop resolution. The recognition of the various alternative nucleic acid conformations by ADAR1 connects genetic programming by flipons with the encoding of information by codons. The findings suggest that incorporating G-flipons into editmers might improve the therapeutic editing efficacy of ADAR1.