María Pilar Gállego’s research while affiliated with University of Zaragoza and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (6)


Products of Finite Connected Subgroups
  • Article
  • Full-text available

September 2020

·

93 Reads

·

1 Citation

María Pilar Gállego

·

Peter Hauck

·

·

[...]

·

María Dolores Pérez-Ramos

For a non-empty class of groups L, a finite group G=AB is said to be an L-connected product of the subgroups A and B if ⟨a,b⟩∈L for all a∈A and b∈B. In a previous paper, we prove that, for such a product, when L=S is the class of finite soluble groups, then [A,B] is soluble. This generalizes the theorem of Thompson that states the solubility of finite groups whose two-generated subgroups are soluble. In the present paper, our result is applied to extend to finite groups previous research about finite groups in the soluble universe. In particular, we characterize connected products for relevant classes of groups, among others, the class of metanilpotent groups and the class of groups with nilpotent derived subgroup. Additionally, we give local descriptions of relevant subgroups of finite groups.

Download

Products of finite connected subgroups

December 2019

·

37 Reads

For a non-empty class of groups L\cal L, a finite group G=ABG = AB is said to be an L\cal L-connected product of the subgroups A and B if a,bL\langle a, b\rangle \in \cal L for all aAa \in A and bBb \in B. In a previous paper, we prove that for such a product, when L=S\cal L = \cal S is the class of finite soluble groups, then [A,B] is soluble. This generalizes the theorem of Thompson which states the solubility of finite groups whose two-generated subgroups are soluble. In the present paper our result is applied to extend to finite groups previous research in the soluble universe. In particular, we characterize connected products for relevant classes of groups; among others the class of metanilpotent groups and the class of groups with nilpotent derived subgroup. Also we give local descriptions of relevant subgroups of finite groups.


2-Engel relations between subgroups

February 2016

·

33 Reads

·

6 Citations

Journal of Algebra

In this paper we study groups G generated by two subgroups A and B such that 〈. a, b〉 is nilpotent of class at most 2 for all a∈. A and b∈. B. A detailed description of the structure of such groups is obtained, generalizing the classical result of Hopkins and Levi on 2-Engel groups.


Saturated formations and products of connected subgroups

May 2011

·

19 Reads

·

7 Citations

Journal of Algebra

For a non-empty class of groups C, two subgroups A and B of a group G are said to be C-connected if 〈a,b〉∈C for all a∈A and b∈B. Given two sets π and ρ of primes, SπSρ denotes the class of all finite soluble groups that are extensions of a normal π-subgroup by a ρ-group.It is shown that in a finite group G=AB, with A and B soluble subgroups, then A and B are SπSρ-connected if and only if Oρ(B) centralizes AOπ(G)/Oπ(G), Oρ(A) centralizes BOπ(G)/Oπ(G) and G∈Sπ∪ρ. Moreover, if in this situation A and B are in SπSρ, then G is in SπSρ.This result is then extended to a large family of saturated formations F, the so-called nilpotent-like Fitting formations of soluble groups, and to finite groups that are products of arbitrarily many pairwise permutable F-connected F-subgroups.


Soluble products of connected subgroups

August 2008

·

17 Reads

·

6 Citations

Revista Matemática Iberoamericana

The main result in the paper states the following: For a finite group G=AB, which is the product of the soluble subgroups A and B, if a,b\langle a,b \rangle is a metanilpotent group for all aAa\in A and bBb\in B, then the factor groups a,bF(G)/F(G)\langle a,b \rangle F(G)/F(G) are nilpotent, F(G) denoting the Fitting subgroup of G. A particular generalization of this result and some consequences are also obtained. For instance, such a group G is proved to be soluble of nilpotent length at most l+1, assuming that the factors A and B have nilpotent length at most l. Also for any finite soluble group G and k1k\geq 1, an element gGg\in G is contained in the preimage of the hypercenter of G/Fk1(G)G/F_{k-1}(G), where Fk1(G)F_{k-1}(G) denotes the (k1k-1)th term of the Fitting series of G, if and only if the subgroups g,h\langle g,h\rangle have nilpotent length at most k for all hGh\in G.


On 2-generated subgroups and products of groups

January 2008

·

23 Reads

·

10 Citations

Journal of Group Theory

For a non-empty class of groups ℱ, two subgroups A and B of a finite group G are said to be ℱ-connected if 〈a, b〉 ∈ ℱ for all a ∈ A and b ∈ B. This paper is a study of ℱ-connection for saturated formations ℱ ⊆ (where denotes the class of all finite groups with nilpotent commutator subgroup). The class of all finite supersoluble groups constitutes an example of such a saturated formation. It is shown for example that in a finite soluble group G = AB the subgroups A and B are -connected if and only if [A, B] ⩽ F(G), where F(G) denotes the Fitting subgroup of G. Also ℱ-connected finite soluble products for any saturated formation ℱ with ℱ ⊆ are characterized.

Citations (4)


... According to [8, Proposition 3.1], 2-generated connected involutory quandles are affine. Let Q be the involutory quandle SmallQuandle (15,6) of the RIG database. The quandle Q is latin and so its 2-generated subquandles are affine. ...

Reference:

On Core Quandles
2-Engel relations between subgroups
  • Citing Article
  • February 2016

Journal of Algebra

... The structure and properties of N -connected products, for the class N of finite nilpotent groups, are well known (cf. [7][8][9]); for instance, G = AB is an N -connected product of A and B if and only if G modulo its hypercenter is a direct product of the images of A and B. Apart from the above-mentioned results regarding S-connection, corresponding studies for the classes N 2 and N A of metanilpotent groups, and groups with nilpotent derived subgroup, respectively, have been carried out in [10,11]; in [12] connected products for the class S π S ρ of finite soluble groups that are extensions of a normal π-subgroup by a ρ-subgroup, for arbitrary sets of primes π and ρ, are studied. The class S π S ρ appears in that reference as the relevant case of a large family of formations, named nilpotent-like Fitting formations, which comprise a variety of classes of groups, such as the class of π-closed soluble groups, or groups with Sylow towers with respect to total orderings of the primes. ...

Soluble products of connected subgroups
  • Citing Article
  • August 2008

Revista Matemática Iberoamericana

... The structure and properties of N -connected products, for the class N of finite nilpotent groups, are well known (cf. [7][8][9]); for instance, G = AB is an N -connected product of A and B if and only if G modulo its hypercenter is a direct product of the images of A and B. Apart from the above-mentioned results regarding S-connection, corresponding studies for the classes N 2 and N A of metanilpotent groups, and groups with nilpotent derived subgroup, respectively, have been carried out in [10,11]; in [12] connected products for the class S π S ρ of finite soluble groups that are extensions of a normal π-subgroup by a ρ-subgroup, for arbitrary sets of primes π and ρ, are studied. The class S π S ρ appears in that reference as the relevant case of a large family of formations, named nilpotent-like Fitting formations, which comprise a variety of classes of groups, such as the class of π-closed soluble groups, or groups with Sylow towers with respect to total orderings of the primes. ...

Saturated formations and products of connected subgroups
  • Citing Article
  • May 2011

Journal of Algebra

... The structure and properties of N -connected products, for the class N of finite nilpotent groups, are well known (cf. [7][8][9]); for instance, G = AB is an N -connected product of A and B if and only if G modulo its hypercenter is a direct product of the images of A and B. Apart from the above-mentioned results regarding S-connection, corresponding studies for the classes N 2 and N A of metanilpotent groups, and groups with nilpotent derived subgroup, respectively, have been carried out in [10,11]; in [12] connected products for the class S π S ρ of finite soluble groups that are extensions of a normal π-subgroup by a ρ-subgroup, for arbitrary sets of primes π and ρ, are studied. The class S π S ρ appears in that reference as the relevant case of a large family of formations, named nilpotent-like Fitting formations, which comprise a variety of classes of groups, such as the class of π-closed soluble groups, or groups with Sylow towers with respect to total orderings of the primes. ...

On 2-generated subgroups and products of groups
  • Citing Article
  • January 2008

Journal of Group Theory