Manuel Guzmán's research while affiliated with Complutense University of Madrid and other places

Publications (191)

Article
Full-text available
Cannabinoids are known to modulate oligodendrogenesis and developmental CNS myelination. However, the cell-autonomous action of these compounds on oligodendroglial cells in vivo, and the molecular mechanisms underlying these effects have not yet been studied. Here, by using oligodendroglial precursor cell (OPC)-targeted genetic mouse models, we sho...
Article
High‐grade gliomas constitute the most frequent and aggressive form of primary brain cancer in adults. These tumors express cannabinoid CB1 and CB2 receptors, as well as other elements of the endocannabinoid system. Accruing preclinical evidence supports that pharmacological activation of cannabinoid receptors located on glioma cells exerts overt a...
Article
Full-text available
In the present study, we investigated the involvement of the chaperone protein BiP (also known as GRP78 or Hspa5), a master regulator of intracellular proteostasis, in two mouse models of neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD). To this end, we used mice bearing partial genetic deletion of the Bi...
Article
Cannabinoids, the bioactive constituents of cannabis, exert a wide array of effects on the brain by engaging Type 1 cannabinoid receptor (CB1R). Accruing evidence supports that cannabinoid action relies on context-dependent factors, such as the biological characteristics of the target cell, suggesting that cell population-intrinsic molecular cues m...
Article
Full-text available
Background and purpose: Research on demyelinating disorders aims to find novel molecules able to induce oligodendrocyte precursor cell differentiation to promote CNS remyelination and functional recovery. Δ9 -Tetrahydrocannabinol (THC), the most prominent active constituent of the hemp plant Cannabis sativa, confers neuroprotection in animal model...
Article
Cover Illustration: Tetrahydrocannabinol administration at early postnatal ages to CNP‐mGFP mice increases mature myelinating oligodendrocyte cell density in the developing white matter. CNP (2′,3′‐Cyclic nucleotide 3′‐phosphodiesterase; green) and MAG (myelin‐associated glycoprotein; red). (See Huerga‐Gómez, A. et al, https://doi.org/10.1002/glia....
Preprint
Full-text available
Background: Research on demyelinating disorders aims to find novel molecules able to induce oligodendrocyte precursor cell differentiation to promote CNS remyelination and functional recovery. Δ9-Tetrahydrocannabinol (THC), the most prominent active constituent of the hemp plant Cannabis sativa, confers neuroprotection in animal models of demyelina...
Article
Full-text available
The endocannabinoid (eCB) system, via cannabinoid CB 1 receptor, regulates neurodevelopment by controlling neural progenitor proliferation and neurogenesis. CB 1 receptor signalling in vivo drives corticofugal deep layer projection neuron development through the regulation of BCL11B and SATB2 transcription factors. Here, we investigated the role of...
Article
Full-text available
Acid sphingomyelinase deficiency (ASMD) leads to cellular accumulation of sphingomyelin (SM), neurodegeneration, and early death. Here, we describe the downregulation of the endocannabinoid (eCB) system in neurons of ASM knockout (ASM-KO) mice and a ASMD patient. High SM reduced expression of the eCB receptor CB1 in neuronal processes and induced i...
Article
The recreational and medical use of cannabis is largely increasing worldwide. Cannabis use, however, can cause adverse side effects, so conducting innovative studies aimed to understand and potentially reduce cannabis-evoked harms is important. Previous research conducted on cultured neural cells had supported that CNR1/CB1R (cannabinoid receptor 1...
Article
Full-text available
d9-Tetrahydrocannabinol (THC), the main bioactive compound found in the plantCannabis sativa, exerts its effects by activating cannabinoid receptors present in manyneural cells. Cannabinoid receptors are also physiologically engaged by endogenouscannabinoid compounds, the so-called endocannabinoids. Specifically, the endo-cannabinoid 2-arachidonoyl...
Article
Full-text available
The use of cannabis is rapidly expanding worldwide. Thus, innovative studies aimed to identify, understand and potentially reduce cannabis-evoked harms are warranted. Here, we found that Δ⁹-tetrahydrocannabinol, the psychoactive ingredient of cannabis, disrupts autophagy selectively in the striatum, a brain area that controls motor behavior, both i...
Article
Full-text available
The use of cannabis is rapidly expanding worldwide. Thus, innovative studies aimed to identify, understand and potentially reduce cannabis-evoked harms are warranted. Here, we found that Δ⁹-tetrahydrocannabinol, the psychoactive ingredient of cannabis, disrupts autophagy selectively in the striatum, a brain area that controls motor behavior, both i...
Article
Full-text available
The use of cannabis is rapidly expanding worldwide. Thus, innovative studies aimed to identify, understand and potentially reduce cannabis-evoked harms are warranted. Here, we found that Δ ⁹ -tetrahydrocannabinol, the psychoactive ingredient of cannabis, disrupts autophagy selectively in the striatum, a brain area that controls motor behavior, both...
Article
Full-text available
Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses1–5. By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors5–7. However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism...
Article
Full-text available
Early Huntington’s disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic bra...
Article
Full-text available
Early Huntington’s disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic bra...
Article
Full-text available
Early Huntington’s disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic bra...
Article
Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids. These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they ha...
Article
Full-text available
Prenatal exposure to Δ9-tetrahydrocannabinol (THC), the most prominent active constituent of cannabis, alters neurodevelopmental plasticity with a long-term functional impact on adult offspring. Specifically, THC affects the development of pyramidal neurons and GABAergic interneurons via cannabinoid CB1 receptors (CB1R). However, the particular con...
Article
Full-text available
Background The administration of certain cannabinoids provides neuroprotection in models of neurodegenerative diseases by acting through various cellular and molecular mechanisms. Many cannabinoid actions in the nervous system are mediated by CB1 receptors, which can elicit psychotropic effects, but other targets devoid of psychotropic activity, in...
Preprint
Full-text available
Early Huntington’s disease (HD) include over-activation of dopamine D 1 receptors (D 1 R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D 1 R over-activation, we present a strategy based on targeting complexes of D 1 R and histamine H 3 receptors (H 3 R). Using an HD striatal cell model and HD organotypic brain...
Article
Cannabinoids exert neuroprotection in a wide array of preclinical models. A number of these studies has focused on cannabinoid CB1 receptors in striatal medium spiny neurons (MSNs) and the most characteristic MSN-degenerative disease, Huntington's disease (HD). Accruing evidence supports that astrocytes contribute to drive HD progression, and that...
Article
Although human epidermal growth factor receptor 2 (HER2)-targeted therapies have dramatically improved the clinical outcome of HER2-positive breast cancer patients, innate and acquired resistance remains an important clinical challenge. New therapeutic approaches and diagnostic tools for identification, stratification, and treatment of patients at...
Article
Full-text available
Alterations of the PI3K/Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway are causally involved in a subset of malformations of cortical development (MCDs) ranging from focal cortical dysplasia (FCD) to hemimegalencephaly and megalencephaly. These MCDs represent a frequent cause of refractory pediatric epilepsy. The endocannabi...
Article
Glioblastoma multiforme (GBM) is the most frequent and aggressive type of brain tumor due, at least in part, to its poor response to current anticancer treatments. These features could be explained, at least partially, by the presence within the tumor mass of a small population of cells termed Glioma Initiating Cells (GICs) that has been proposed t...
Article
Glioblastoma multiforme (GBM) is the most frequent and aggressive form of brain cancer. These features are explained at least in part by the high resistance exhibited by these tumors to current anticancer therapies. Thus, the development of novel therapeutic approaches is urgently needed to improve the survival of the patients suffering this devast...
Article
Breast cancer is the second leading cause of death among women. Although early diagnosis and development of new treatments have improved their prognosis, many patients present innate or acquired resistance to current therapies. New therapeutic approaches are therefore warranted for the management of this disease. Extensive preclinical research has...
Article
Dopamine (DA) transmission mediates numerous aspects of behavior. Although DA release is strongly linked to firing of DA neurons, recent developments indicate the importance of presynaptic modulation at striatal dopaminergic terminals. The endocannabinoid (eCB) system regulates DA release and is a canonical gatekeeper of goal-directed behavior. Her...
Article
Full-text available
The vast majority of neurons within the striatum are GABAergic medium spiny neurons (MSNs), which receive glutamatergic input from the cortex and thalamus, and form two major efferent pathways: the direct pathway, expressing dopamine D1 receptor (D1R-MSNs), and the indirect pathway, expressing dopamine D2 receptor (D2R-MSNs). While molecular mechan...
Article
Full-text available
The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) a...
Article
Background and purpose: Stroke is a leading cause of adult disability characterized by physical, cognitive, and emotional disturbances. Unfortunately, pharmacological options are scarce. The cannabinoid type-2 receptor (CB2R) is neuroprotective in acute experimental stroke by anti-inflammatory mechanisms. However, its role in chronic stroke is sti...
Article
Full-text available
Significance statement: The dorsal striatum is a major input structure of the basal ganglia and plays a key role in the control of vital processes such as motor behavior, cognition, and motivation. Whereas the Gs/Gi-protein-dependent tuning of striatal neurons is fairly well known, the precise impact and underlying mechanism of Gq-protein-dependen...
Article
Full-text available
Neuronal migration is a fundamental process of brain development, and its disruption underlies devastating neurodevelopmental disorders. The transcriptional programs governing this process are relatively well characterized. However, how environmental cues instruct neuronal migration remains poorly understood. Here, we demonstrate that the cannabino...
Article
Full-text available
Autophagy is considered primarily a cell survival process, although it can also lead to cell death. However, the factors that dictate the shift between these 2 opposite outcomes remain largely unknown. In this work, we used Δ(9)-tetrahydrocannabinol (THC, the main active component of marijuana, a compound that triggers autophagy-mediated cancer cel...
Article
Full-text available
Huntington’s disease (HD) is a neurodegenerative disease for which there is no curative treatment available. Given that the endocannabinoid system is involved in the pathogenesis of HD mouse models, stimulation of specific targets within this signaling system has been investigated as a promising therapeutic agent in HD. We conducted a double-blind,...
Article
Full-text available
The orphan G protein-coupled receptor GPR55 has been directly or indirectly related to basic alterations that drive malignant growth: uncontrolled cancer cell proliferation, sustained angiogenesis, and cancer cell adhesion and migration. However, little is known about the involvement of this receptor in metastasis. Here, we show that elevated GPR55...
Article
Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the...
Article
Full-text available
The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain str...
Article
A large body of evidence shows that cannabinoids, in addition to their well-known palliative effects on some cancer-associated symptoms, can reduce tumour growth in animal models of cancer. They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival. In addition, cannabinoids inhibit angio...
Article
Full-text available
Pharmacological activation of cannabinoid receptors elicits antitumoral responses in different cancer models. However, the biological role of these receptors in tumor physio-pathology is still unknown. We analyzed CB2 cannabinoid receptor protein expression in two series of 166 and 483 breast tumor samples operated in the University Hospitals of Ki...
Article
Full-text available
Among the many signalling lipids, endocannabinoids are increasingly recognized for their important roles in neuronal and glial development. Recent experimental evidence suggests that, during neuronal differentiation, endocannabinoid signalling undergoes a fundamental switch from the prenatal determination of cell fate to the homeostatic regulation...
Article
Full-text available
Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a geneti...
Article
Full-text available
The G protein-coupled receptors CB2 (CB2R) and GPR55 are overexpressed in cancer cells and human tumors. Because a modulation of GPR55 activity by cannabinoids has been suggested, we analyzed whether this receptor participates in cannabinoid effects on cancer cells. Here we show that CB2R and GPR55 form heteromers in cancer cells, that these struct...
Article
Full-text available
The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of...