M. N. Drozdovskaya's research while affiliated with Leiden University and other places

Publications (68)

Article
Monodeuterated methanol is thought to form during the prestellar core stage of star formation. Observed variations in the CH2DOH/CH3OD ratio suggest that its formation is strongly dependent on the surrounding cloud conditions. Thus, it is a potential tracer of the physical conditions before the onset of star formation. A single-point physical model...
Preprint
Mono-deuterated methanol is thought to form during the prestellar core stage of star formation. Observed variations in the CH2DOH/CH3OD ratio suggest that its formation is strongly dependent on the surrounding cloud conditions. Thus, it is a potential tracer of the physical conditions before the onset of star formation. A single-point physical mode...
Article
Context. Di-deuterated molecules are observed in the earliest stages of star formation at abundances of a few percent relative to their nondeuterated isotopologs, which is unexpected considering the scarcity of deuterium in the interstellar medium. With sensitive observations leading to the detection of a steadily increasing number of di-deuterated...
Preprint
Full-text available
Accurate quantification of the column density of di-deuterated methanol is a key missing puzzle piece in the otherwise thoroughly constrained family of D-bearing methanol in the deeply embedded low-mass protostellar system and astrochemical template source IRAS16293-2422. A spectroscopic dataset for astrophysical purposes is built for CHD$_{2}$OH a...
Article
Full-text available
We describe the AMBITION project, a mission to return the first-ever cryogenically-stored sample of a cometary nucleus, that has been proposed for the ESA Science Programme Voyage 2050. Comets are the leftover building blocks of giant planet cores and other planetary bodies, and fingerprints of Solar System’s formation processes. We summarise some...
Article
We present the first mid-infrared (MIR) detections of HNC and in the interstellar medium, and numerous resolved HCN rovibrational transitions. Our observations span 12.8–22.9 μ m toward the hot core Orion IRc2, obtained with the Echelon-Cross-Echelle Spectrograph aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). In particular, ∼5...
Preprint
The ratios of the three stable oxygen isotopes 16O, 17O and 18O on Earth and, as far as we know in the solar system, show variations on the order of a few percent at most, with a few outliers in meteorites. However, in the interstellar medium there are some highly fractionated oxygen isotopic ratios in some specific molecules. The goal of this work...
Article
Deuterated methanol is one of the most robust windows astrochemists have on the individual chemical reactions forming deuterium-bearing molecules and the physicochemical history of the regions where they reside. The first-time detection of mono- and di-deuterated methanol in a cometary coma is presented for comet 67P/Churyumov–Gerasimenko using Ros...
Preprint
Deuterated methanol is one of the most robust windows astrochemists have on the individual chemical reactions forming deuterium-bearing molecules and the physicochemical history of the regions where they reside. The first-time detection of mono- and di-deuterated methanol in a cometary coma is presented for comet 67P/Churyumov-Gerasimenko using Ros...
Article
Physicochemical models can be powerful tools to trace the chemical evolution of a protostellar system and allow to constrain its physical conditions at formation. The aim of this work is to assess whether source-tailored modelling is needed to explain the observed molecular abundances around young, low-mass protostars or if, and to what extent, gen...
Article
The ratios of the three stable oxygen isotopes 16O, 17O, and 18O on the Earth and, as far as we know in the Solar system, show variations on the order of a few per cent at most, with a few outliers in meteorites. However, in the interstellar medium there are some highly fractionated oxygen isotopic ratios in some specific molecules. The goal of thi...
Preprint
Full-text available
We present the first mid-infrared (MIR) detections of HNC and H13CN in the interstellar medium, and numerous, resolved HCN rovibrational transitions. Our observations span 12.8 to 22.9 micron towards the hot core Orion IRc2, obtained with the Echelon-Cross-Echelle Spectrograph aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Exc...
Preprint
Physicochemical models can be powerful tools to trace the chemical evolution of a protostellar system and allow to constrain its physical conditions at formation. The aim of this work is to assess whether source-tailored modelling is needed to explain the observed molecular abundances around young, low-mass protostars or if, and to what extent, gen...
Article
Context. Complex organic molecules with three carbon atoms are found in the earliest stages of star formation. In particular, propenal (C 2 H 3 CHO) is a species of interest due to its implication in the formation of more complex species and even biotic molecules. Aims. This study aims to search for the presence of C 2 H 3 CHO and other three-carbo...
Article
Full-text available
Context. Complex organic molecules with three carbon atoms are found in the earliest stages of star formation. In particular, propenal (C 2 H 3 CHO) is a species of interest due to its implication in the formation of more complex species and even biotic molecules. Aims. This study aims to search for the presence of C 2 H 3 CHO and other three-carbo...
Preprint
Complex organic molecules with three carbon atoms are found in the earliest stages of star formation. In particular, propenal (C$_2$H$_3$CHO) is a species of interest due to its implication in the formation of more complex species and even biotic molecules. This study aims to search for the presence of C$_2$H$_3$CHO and other three-carbon species s...
Article
To understand how phosphorus (P)-bearing molecules are formed in star-forming regions, we have analysed the Atacama Large Millimeter/Submillimeter Array (ALMA) observations of PN and PO towards the massive star-forming region AFGL 5142, combined with a new analysis of the data of the comet 67P/Churyumov–Gerasimenko taken with the Rosetta Orbiter Sp...
Article
Context. Complex organic molecules are detected in many sources in the warm inner regions of envelopes surrounding deeply embedded protostars. Exactly how these species form remains an open question. Aims. This study aims to constrain the formation of complex organic molecules through comparisons of their abundances towards the Class 0 protostellar...
Preprint
Complex organic molecules (COM) are detected in many sources in the warm inner regions of envelopes surrounding deeply embedded protostars. Exactly how these COM form remains an open question. This study aims to constrain the formation of complex organic molecules through comparisons of their abundances towards the Class 0 protostellar binary IRAS...
Preprint
To understand how Phosphorus-bearing molecules are formed in star-forming regions, we have analysed ALMA observations of PN and PO towards the massive star-forming region AFGL 5142, combined with a new analysis of the data of the comet 67P/Churyumov-Gerasimenko taken with the ROSINA instrument onboard Rosetta. The ALMA maps show that the emission o...
Article
Our modern day Solar System has 4.6 × 109 yr of evolution behind it with just a few relics of its birth conditions remaining. Comets are thought to be some of the most pristine tracers of the initial ingredients that were combined to produce the Earth and the other planets. Other low-mass protostars may be analogous to our proto-Sun and hence, coul...
Article
Comets are considered to be some of the most pristine and unprocessed Solar system objects accessible to in situ exploration. Investigating their molecular and elemental composition takes us on a journey back to the early period of our Solar system and possibly even further. In this work, we deduce the bulk abundances of the major volatile species...
Article
Context. Propyne (CH 3 CCH), also known as methyl acetylene, has been detected in a variety of environments, from Galactic star-forming regions to extragalactic sources. These molecules are excellent tracers of the physical conditions in star-forming regions, allowing the temperature and density conditions surrounding a forming star to be determine...
Preprint
Context. Propyne (CH$_3$CCH) has been detected in a variety of environments, from Galactic star-forming regions to extragalactic sources. Such molecules are excellent tracers of the physical conditions in star-forming regions. Aims. This study explores the emission of CH$_3$CCH in the low-mass protostellar binary, IRAS 16293$-$2422, examining the s...
Preprint
Our modern day Solar System has $4.6\times10^9$ yrs of evolution behind it with just a few relics of its birth conditions remaining. Comets are thought to be some of the most pristine tracers of the initial ingredients that were combined to produce the Earth and the other planets. Other low-mass protostars may be analogous to our proto-Sun and henc...
Preprint
Full-text available
Comets contain abundant amounts of organic and inorganic species. Many of the volatile molecules in comets have also been observed in the interstellar medium and some of them even with similar relative abundances, indicating formation under similar conditions or even sharing a common chemical pathway. There is a growing amount of evidence that sugg...
Article
Comets contain abundant amounts of organic and inorganic species. Many of the volatile molecules in comets have also been observed in the interstellar medium and some of them even with similar relative abundances, indicating formation under similar conditions or even sharing a common chemical pathway. There is a growing amount of evidence that sugg...
Preprint
This white paper proposes that AMBITION, a Comet Nucleus Sample Return mission, be a cornerstone of ESA's Voyage 2050 programme. We summarise some of the most important questions still open in cometary science after the successes of the Rosetta mission, many of which require sample analysis using techniques that are only possible in laboratories on...
Preprint
Comets are considered to be some of the most pristine and unprocessed solar system objects accessible to in-situ exploration. Investigating their molecular and elemental composition takes us on a journey back to the early period of our solar system and possibly even further. In this work, we deduce the bulk abundances of the major volatile species...
Article
Context. The majority of stars form in binary or higher order systems. The evolution of each protostar in a multiple system may start at different times and may progress differently. The Class 0 protostellar system IRAS 16293–2422 contains two protostars, “A” and “B”, separated by ~600 au and embedded in a single, 10 ⁴ au scale envelope. Their rela...
Preprint
[Abridged] The majority of stars form in binary or higher order systems. The Class 0 protostellar system IRAS16293-2422 contains two protostars, 'A' and 'B', separated by ~600 au and embedded in a single, 10^4 au scale envelope. Their relative evolutionary stages have been debated. We aim to study the relation and interplay between the two protosta...
Article
Full-text available
Nitrogen oxides are thought to play a significant role as a nitrogen reservoir and to potentially participate in the formation of more complex species. Until now, only NO, NO, and HNO have been detected in the interstellar medium. We report the first interstellar detection of nitrous acid (HONO). Twelve lines were identified towards component B of...
Preprint
Full-text available
Nitrogen oxides are thought to play a significant role as a nitrogen reservoir and to potentially participate in the formation of more complex species. Until now, only NO, N$_2$O and HNO have been detected in the interstellar medium. We report the first interstellar detection of nitrous acid (HONO). Twelve lines were identified towards component B...
Article
Studies of deuterated isotopologues of complex organic molecules can provide important constraints on their origin in star formation regions. In particular, the abundances of deuterated species are very sensitive to the physical conditions in the environment where they form. Because the temperatures in star formation regions are low, these isotopol...
Article
Methyl mercaptan (also known as methanethiol), CH3SH, has been found in the warm and dense parts of high- as well as low- mass star-forming regions. The aim of the present study is to obtain accurate spectroscopic parameters of the S-deuterated methyl mercaptan CH3SD to facilitate astronomical observations by radio telescope arrays at (sub)millimet...
Preprint
Methyl mercaptan (also known as methanethiol), CH3SH, has been found in the warm and dense parts of high -- as well as low -- mass star-forming regions. The aim of the present study is to obtain accurate spectroscopic parameters of the S-deuterated methyl mercaptan CH$_3$SD to facilitate astronomical observations by radio telescope arrays at (sub)m...
Preprint
Studies of deuterated isotopologues of complex organic molecules can provide important constraints on their origin in regions of star formation. In particular, the abundances of deuterated species are very sensitive to the physical conditions in the environment where they form. Due to the low temperatures in regions of star formation, these isotopo...
Article
Recent measurements carried out at comet 67P/Churyumov–Gerasimenko (67P) with the Rosetta probe revealed that molecular oxygen, O₂, is the fourth most abundant molecule in comets. Models show that O₂ is likely of primordial nature, coming from the interstellar cloud from which our solar system was formed. However, gaseous O₂ is an elusive molecule...
Article
Context. One of the important questions of astrochemistry is how complex organic molecules, including potential prebiotic species, are formed in the envelopes around embedded protostars. The abundances of minor isotopologues of a molecule, in particular the D- and ¹³ C-bearing variants, are sensitive to the densities, temperatures and timescales ch...
Preprint
This paper presents a systematic survey of the deuterated and 13C isotopologues of a variety of oxygen-bearing complex organic molecules on Solar System scales toward the protostar IRAS 16293-2422B. We use the data from an unbiased molecular line survey between 329 and 363 GHz from the Atacama Large Millimeter/submillimeter Array (ALMA). The observ...
Article
Context. Hydroxylamine (NH 2 OH) and methylamine (CH 3 NH 2 ) have both been suggested as precursors to the formation of amino acids and are therefore, of interest to prebiotic chemistry. Their presence in interstellar space and formation mechanisms, however, are not well established. Aims. We aim to detect both amines and their potential precursor...
Preprint
Hydroxylamine (NH$_{2}$OH) and methylamine (CH$_{3}$NH$_{2}$) have both been suggested as precursors to the formation of amino acids and are therefore of interest to prebiotic chemistry. Their presence in interstellar space and formation mechanisms, however, are not well established. We aim to detect both amines and their potential precursor molecu...
Article
Context. Methyl isocyanide (CH 3 NC) is the isocyanide with the largest number of atoms confirmed in the interstellar medium (ISM), but it is not an abundant molecule, having only been detected towards a handful of objects. Conversely, its isomer, methyl cyanide (CH 3 CN), is one of the most abundant complex organic molecules detected in the ISM, w...
Preprint
Methyl isocyanide (CH$_3$NC) is the isocyanide with the largest number of atoms confirmed in the interstellar medium (ISM), but it is not an abundant molecule, having only been detected towards a handful of objects. Conversely, its isomer, methyl cyanide (CH$_3$CN), is one of the most abundant complex organic molecules detected in the ISM, with det...
Article
Context. Much attention has been placed on the dust distribution in protostellar envelopes, but there are still many unanswered questions regarding the physico-chemical structure of the gas. Aims. Our aim is to start identifying the factors that determine the chemical structure of protostellar regions, by studying and comparing low-mass embedded sy...
Preprint
Recent measurements carried out at comet 67P/C-G with the ${\it Rosetta}$ probe revealed that molecular oxygen, O$_2$, is the fourth most abundant molecule in comets. Models show that O$_2$ is likely of primordial nature, coming from the interstellar cloud from which our Solar System was formed. However, gaseous O$_2$ is an elusive molecule in the...
Preprint
Much attention has been placed on the dust distribution in protostellar envelopes, but there are still many unanswered questions regarding the structure of the gas. We aim to start identifying the factors that determine the chemical structure of protostellar regions, by studying and comparing low-mass embedded systems in key molecular tracers. The...
Article
Full-text available
The evolutionary past of our Solar System can be pieced together by comparing analogous low-mass protostars with remnants of our Protosolar Nebula - comets. Sulphur-bearing molecules may be unique tracers of the joint evolution of the volatile and refractory components. ALMA Band 7 data from the large unbiased Protostellar Interferometric Line Surv...
Article
The chemical evolution of a star- and planet-forming system begins in the prestellar phase and proceeds across the subsequent evolutionary phases. The chemical trail from cores to protoplanetary disks to planetary embryos can be studied by comparing distant young protostars and comets in our Solar System. One particularly chemically rich system tha...
Article
Full-text available
Searches for the prebiotically-relevant cyanamide (NH$_2$CN) towards solar-type protostars have not been reported in the literature. We here present the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PIL...
Article
Full-text available
Context. The Class 0 protostellar binary IRAS 16293–2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows the study of its physical and chemical structure on solar system scales using high angular resoluti...
Article
Full-text available
Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes ¹. Consequently, they have been proposed as biomarkers in the search for life on exoplanets ². Simple halogen hydrides have been detected in interstellar s...
Article
Context. Herschel observations of water and highly excited CO (J > 9) have allowed the physical and chemical conditions in the more active parts of protostellar outflows to be quantified in detail for the first time. However, to date, the studied samples of Class 0/I protostars in nearby star-forming regions have been selected from bright, well-kno...
Article
One of the open questions in astrochemistry is how complex organic and prebiotic molecules are formed. Aims. Our aim is to start the process of compiling an inventory of oxygen-bearing complex organic molecules toward the solar-type Class 0 protostellar binary IRAS16293-2422 from an unbiased spectral survey with ALMA (PILS). Here we focus on the ne...
Article
We investigate the delivery of regular and deuterated forms of water from prestellar cores to circumstellar disks. We adopt a semi-analytical axisymmetric two-dimensional collapsing core model with post-processing gas-ice astrochemical simulations, in which a layered ice structure is considered. The physical and chemical evolutions are followed unt...
Article
The inner regions of the envelopes surrounding young protostars are characterised by a complex chemistry, with prebiotic molecules present on the scales where protoplanetary disks eventually may form. This paper introduces a systematic survey, "Protostellar Interferometric Line Survey (PILS)" of the Class 0 protostellar binary IRAS 16293-2422 using...
Article
Low-mass protostars are the extrasolar analogues of the natal Solar System. Sophisticated physicochemical models are used to simulate the formation of two protoplanetary discs from the initial prestellar phase, one dominated by viscous spreading and the other by pure infall. The results show that the volatile prestellar fingerprint is modified by t...
Conference Paper
We investigate the transport of H2O and HDO ices from the collapse of rotating cores to the formation of disks. We adopt a two-dimensional physical model in order to trace fluid parcels, in which molecular evolution is simulated using a gas-ice chemical model. We find that water ice accreting from the protostellar envelope onto the disks can have a...
Article
Interstellar methanol is thought to be the precursor of larger, more complex organic molecules. It holds a central role in many astrochemical models (e.g., Garrod & Herbst 2006). Methanol has also been the focus of several laboratory studies (e.g., Watanabe et al . 2004, Fuchs et al . 2009), in an effort to gain insight into grain-surface chemistry...
Article
Complex organic molecules are ubiquitous companions of young low-mass protostars. Recent observations suggest that their emission stems, not only from the traditional hot corino, but also from offset positions. In this work, 2D physicochemical modelling of an envelope-cavity system is carried out. Wavelength-dependent radiative transfer calculation...
Article
Full-text available
Protostars interact with their surroundings through jets and winds impacting on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low-mass young stellar objects in order to characterize shocks...
Article
Interstellar methanol is considered to be a parent species of larger, more complex organic molecules. A physicochemical simulation of infalling parcels of matter is performed for a low-mass star-forming system to trace the chemical evolution from cloud to disc. An axisymmetric 2D semi-analytic model generates the time-dependent density and velocity...
Article
Stars are born upon the gravitation infall of clumps in molecular clouds. Complex organic compounds have been observed to accompany star formation and are also believed to be the simplest ingredients to life. Therefore understanding complex organics under star forming conditions is fundamentally interesting. This work models the formation and distr...

Citations

... Finally, models based on the "exclusive grain-surface" paradigm are unable to reproduce the observed abundance of several iCOMs (e.g. Coutens et al., 2016;Ligterink et al., 2018;Müller et al., 2016). ...
... [12][13][14] Astrochemical models have predicted that the [CH 2 DOH]/[CH 3 OD] ratio should be ≥10 in prestellar cores and that CH 3 OD is only efficiently formed on icy grains at later evolutionary stages when the ices are warmed due to the presence of young (proto)stars. 15 Deviations from the statistical ratio in high-mass star-forming regions have also been attributed to grain surface chemistry, 16,17 but investigations into the intricacies of such processes-and the potential role of gas processing-are ongoing. ...
... The deuterated species detected in the PILS data are the mono-deuterated isotopomers of the oxygen-bearing organics glycolaldehyde (Jørgensen et al. 2016), ethanol, ketene, formic acid and of mono-deuterated acetaldehyde species CH 3 CDO (Jørgensen et al. 2018) and CH 2 DCHO (Coudert et al. 2019;Manigand et al. 2020), of the nitrogenbearing organics isocyanic acid DNCO and the monodeuterated isotopomers of formamide (Coutens et al. 2016) and the cyanamide isotopologue HDNCN (Coutens et al. 2018) and sulfur-containing species such as the hydrogen sulfide isotopologue HD 34 S (Drozdovskaya et al. 2018). Also, the PILS data reveal the presence of doubly-deuterated organics including the methyl cyanide species CHD 2 CN (Calcutt et al. 2018), the methyl formate species CHD 2 OCHO (Manigand et al. 2019) and the dimethyl ether species CHD 2 OCH 3 (Richard et al. 2021) and enable new and more accurate constraints on the doubly-and triply-deuterated variants of methanol in the warm gas close to the protostars (Drozdovskaya et al. 2022;Ilyushin et al. 2022). These systematic studies also enabled a more detailed comparison across the different species. ...
... Küppers et al. (2009) proposed a passive system that would keep the sample below 133 K during cruise and 163 K during reentry, which would return a valuable sample at relatively low cost, even if some ices were lost. Bockelée- Morvan et al. (2021) suggest that temperatures must be kept below 90 K, and pressure at 1 bar, to preserve most volatile ices (H 2 O, CO 2 , HCN). Even lower temperatures or higher pressures would be necessary to keep CO stable. ...
... However, recent ALMA continuum observations of Orion KL by Otter et al. (2021) show an embedded edge-on disk (source 24 in their analysis) at the Hot Core millimeter/submillimeter emission peak that is much fainter than Source I and unlikely to be high-mass. Another hybrid hypothesis is that the Hot Core might have been a typical hot core around Source I prior to Orion's explosive event, and that, as a result of this, even the dense gas of the Hot Core were spatially separated from the protostars, especially Source I (Nickerson et al. 2021), giving us the enigmatic molecular core we observe today. ...
... Also, H 2 C 18 O due to formaldehyde and fragmentation of methanol, both with the heavy oxygen isotope, can be found (cf. Altwegg et al. 2020a). ...
... The main molecular reservoir of deuterium in the cold universe and Solar System is HD, but in comets it is HDO. Strong enrichment in deuterium in water (D/H=10 −4 to 10 −3 ) and other molecules is observed in star forming regions (e.g., Drozdovskaya et al. 2021;Jensen et al. 2021) and D/H in cometary water has been measured in a dozen comets ( Fig. 12) with sensitive upper limits obtained in a few others. Cometary D/H varies between one and four times the VSMOW value as measured by different techniques. ...
... Based on meteoritic (Lodders 2010;Palme et al. 2014) and cometary (Le Roy et al. 2015;Altwegg et al. 2019;Rubin et al. 2019Rubin et al. , 2020 data, we assumed that rock-forming elements are subtracted from the gas phase and locked into rocks in meteoritic proportion. In this framework, the comparison between meteoritic (Lodders 2010;Palme et al. 2014) and protosolar abundances (Asplund et al. 2009;Scott et al. 2015aScott et al. , 2015b reveals that rock-forming elements account for a mass fraction Z rock = 6.67 × 10 −3 of the total gas in the disk. ...
... The physical model is representative of a typical prestellar core. 39,40 The core age of the fiducial model, t core , is assumed to be 3 × 10 5 yr. 40 The dust and gas temperatures (T dust ) are assumed to be the same, and values of 10, 15, 20, 25, and 30 K are considered. ...
... The chemical composition of planets is affected by the chemical makeup of protoplanetary disks within which they form. The chemical content of prestellar and protostellar cores sets the initial conditions in protoplanetary disks (Caselli & Ceccarelli 2012;Drozdovskaya et al. 2019;Jørgensen et al. 2020;Booth et al. 2021;Oberg & Bergin 2021). Molecular lines are a powerful tool to reveal the chemical and physical processes during star formation and core evolution, since different molecules can be associated with specific chemical and physical environments (Bergin & Tafalla 2007). ...