Lydia G. Kenney’s research while affiliated with Georgia Institute of Technology and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


Molecular basis for inhibition of methane clathrate growth by a deep subsurface bacterial protein
  • Article

February 2024

·

21 Reads

Biophysical Journal

Zixing Fan

·

·

·

[...]

·


Molecular basis for inhibition of methane clathrate growth by a deep subsurface bacterial protein
  • Article
  • Full-text available

August 2023

·

101 Reads

·

1 Citation

PNAS Nexus

Methane clathrates on continental margins contain the largest stores of hydrocarbons on Earth, yet the role of biomolecules in clathrate formation and stability remains almost completely unknown. Here we report new methane clathrate-binding proteins (CbpAs) of bacterial origin discovered in metagenomes from gas clathrate-bearing ocean sediments. CbpAs show similar suppression of methane clathrate growth as the commercial gas clathrate inhibitor polyvinylpyrrolidone and inhibit clathrate growth at lower concentrations than antifreeze proteins (AFPs) previously tested. Unlike AFPs, CbpAs are selective for clathrate over ice. CbpA3 adopts a non-globular, extended structure with an exposed hydrophobic surface, and, unexpectedly, its TxxxAxxxAxx motif common to AFPs is buried and not involved in clathrate binding. Instead, simulations and mutagenesis suggest a bipartite interaction of CbpAs with methane clathrate, with the pyrrolidine ring of a highly conserved proline residue mediating binding by filling empty clathrate cages. The discovery that CbpAs exert such potent control on methane clathrate properties implies that biomolecules from native sediment bacteria may be important for clathrate stability and habitability.

Download