Lisa Makubvure’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


Comparison of hard categorization (binary decision) and ranking categorization (multiple categories ranked) Hard categorization [38].
Ranking categorization [38]. (a) represents hard categorization while (b) represents ranking categorization.
Naive-Bayes-Based Classification [55].
CNN Sequence to Classify Digits [60].
How the Vector Space Model Works [64].

+3

Text Classification: How Machine Learning Is Revolutionizing Text Categorization
  • Article
  • Full-text available

February 2025

·

117 Reads

·

1 Citation

·

Lisa Makubvure

·

Benjamin Gyamfi

·

[...]

·

Kehinde Akinwolere

The automated classification of texts into predefined categories has become increasingly prominent, driven by the exponential growth of digital documents and the demand for efficient organization. This paper serves as an in-depth survey of text classification and machine learning, consolidating diverse aspects of the field into a single, comprehensive resource—a rarity in the current body of literature. Few studies have achieved such breadth, and this work aims to provide a unified perspective, offering a significant contribution to researchers and the academic community. The survey examines the evolution of machine learning in text categorization (TC), highlighting its transformative advantages over manual classification, such as enhanced accuracy, reduced labor, and adaptability across domains. It delves into various TC tasks and contrasts machine learning methodologies with knowledge engineering approaches, demonstrating the strengths and flexibility of data-driven techniques. Key applications of TC are explored, alongside an analysis of critical machine learning methods, including document representation techniques and dimensionality reduction strategies. Moreover, this study evaluates a range of text categorization models, identifies persistent challenges like class imbalance and overfitting, and investigates emerging trends shaping the future of the field. It discusses essential components such as document representation, classifier construction, and performance evaluation, offering a well-rounded understanding of the current state of TC. Importantly, this paper also provides clear research directions, emphasizing areas requiring further innovation, such as hybrid methodologies, explainable AI (XAI), and scalable approaches for low-resource languages. By bridging gaps in existing knowledge and suggesting actionable paths forward, this work positions itself as a vital resource for academics and industry practitioners, fostering deeper exploration and development in text classification.

Download

Text Classification: How Machine Learning is Revolutionizing Text Categorization

December 2024

·

22 Reads

The automated classification of texts into predefined categories has become increasingly prominent, driven by the exponential growth of digital documents and the demand for efficient organization. This paper serves as an in-depth survey of text classification and machine learning, consolidating diverse aspects of the field into a single, comprehensive resource—a rarity in the current body of literature. Few studies have achieved such breadth, and this work claims to provide a unified perspective, offering a significant contribution to researchers and the academic community. The survey examines the evolution of machine learning in text categorization (TC), highlighting its transformative advantages over manual classification, such as enhanced accuracy, reduced labor, and adaptability across domains. It delves into various TC tasks and contrasts machine learning methodologies with knowledge engineering approaches, demonstrating the strengths and flexibility of data-driven techniques. Key applications of TC are explored, alongside an analysis of critical machine learning methods, including document representation techniques and dimensionality reduction strategies. Moreover, this study evaluates a range of text categorization models, identifies persistent challenges like class imbalance and overfitting, and investigates emerging trends shaping the future of the field. It discusses essential components such as document representation, classifier construction, and performance evaluation, offering a well-rounded understanding of the current state of TC. Importantly, this paper also provides clear research directions, emphasizing areas requiring further innovation, such as hybrid methodologies, explainable AI (XAI), and scalable approaches for low-resource languages. By bridging gaps in existing knowledge and suggesting actionable paths forward, this work positions itself as a vital resource for academics and industry practitioners, fostering deeper exploration and development in text classification.