September 2014
·
34 Reads
·
8 Citations
Journal of Statistical Computation and Simulation
In this article, we consider the two-factor unbalanced nested design model without the assumption of equal error variance. For the problem of testing ‘main effects’ of both factors, we propose a parametric bootstrap (PB) approach and compare it with the existing generalized F (GF) test. The Type I error rates of the tests are evaluated using Monte Carlo simulation. Our studies show that the PB test performs better than the GF test. The PB test performs very satisfactorily even for small samples while the GF test exhibit poor Type I error properties when the number of factorial combinations or treatments goes up. It is also noted that the same tests can be used to test the significance of the random effect variance component in a two-factor mixed effects nested model under unequal error variances.