Lara Dolecek's research while affiliated with University of California and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (206)
Spatially-Coupled (SC)-LDPC codes are known to have outstanding error-correction performance and low decoding latency. Whereas previous works on LDPC and SC-LDPC codes mostly take either an asymptotic or a finite-length design approach, in this paper we present a unified framework for jointly optimizing the codes' thresholds and cycle counts to add...
div>Light nodes in blockchains improve the scalability of the system by storing a small portion of the blockchain ledger. In certain blockchains, light nodes are vulnerable to a data availability (DA) attack where a malicious node makes the light nodes accept an invalid block by hiding the invalid portion of the block from the nodes in the system....
Lights nodes are commonly used in blockchain systems to combat the storage burden. However, light nodes are known to be vulnerable to data availability (DA) attacks where they accept an invalid block with unavailable portions. Previous works have used LDPC codes with Merkle Trees to mitigate DA attacks. However, LDPC codes have issues in the finite...
Spatially-coupled (SC) codes, known for their threshold saturation phenomenon and low-latency windowed decoding algorithms, are ideal for streaming applications and data storage systems. SC codes are constructed by partitioning an underlying block code, followed by rearranging and concatenating the partitioned components in a convolutional manner....
div>In blockchain systems, full nodes store the entire blockchain ledger and validate all transactions in the system by operating on the entire ledger. However, for better scalability and decentralization of the system, blockchains also run light nodes that only store a small portion of the ledger. In blockchain systems having a majority of malicio...
Light nodes are clients in blockchain systems that only store a small portion of the blockchain ledger. In certain blockchains, light nodes are vulnerable to a data availability (DA) attack where a malicious node makes the light nodes accept an invalid block by hiding the invalid portion of the block from the nodes in the system. Recently, a techni...
There are few mathematicians whose contributions go beyond named conjectures and theorems: Vladimir Iosifovich Levenshtein (
, 1935–2017) is one such true exception. During the five decades of his active research career, he enriched combinatorics, coding, and information theory with elegant problem formulations, ingenious algorithmic solutions, a...
In this paper, we introduce the Variable Coded Distributed Batch Matrix Multiplication (VCDBMM) problem which tasks a distributed system to perform batch matrix multiplication where matrices are not necessarily distinct among batch jobs. Most coded matrix-matrix computation work has broadly focused in two directions: matrix partitioning for computi...
A popular method of improving the throughput of blockchain systems is by running smaller side blockchains that push the hashes of their blocks onto a trusted blockchain. Side blockchains are vulnerable to stalling attacks where a side blockchain node pushes the hash of a block to the trusted blockchain but makes the block unavailable to other nodes...
Crossbar resistive memory with the 1 Selector 1 Resistor (1S1R) structure is attractive for nonvolatile, high-density, and low-latency storage-class memory applications. As technology scales down to the single-nm regime, the increasing resistivity of wordline/bitline becomes a limiting factor to device reliability. This paper presents write/read co...
Computational storage, known as a solution to significantly reduce the latency by moving data-processing down to the data storage, has received wide attention because of its potential to accelerate data-driven devices at the edge. To meet the insatiable appetite for complicated functionalities tailored for intelligent devices such as autonomous veh...
Spatially-coupled (SC) codes, known for their threshold saturation phenomenon and low-latency windowed decoding algorithms, are ideal for streaming applications. They also find application in various data storage systems because of their excellent performance. SC codes are constructed by partitioning an underlying block code, followed by rearrangin...
Reliability of the memory subsystem is a growing concern in computer architecture and system design. From on-chip embedded memories in Internet-of-Things (IoT) devices and on-chip caches to off-chip main memories, the memory subsystems have become the limiting factor in the overall reliability of computing systems. This is because they are primaril...
In certain blockchain systems, light nodes are clients that download only a small portion of the block. Light nodes are vulnerable to data availability (DA) attacks where a malicious node hides an invalid portion of the block from the light nodes. Recently, a technique based on erasure codes called Coded Merkle Tree (CMT) was proposed by Yu et al....
In order to accommodate the ever-growing data from various, possibly independent, sources and the dynamic nature of data usage rates in practical applications, modern cloud data storage systems are required to be scalable, flexible, and heterogeneous. The recent rise of the blockchain technology is also moving various information systems towards de...
When a computational task tolerates a relaxation of its specification or when an algorithm tolerates the effects of noise in its execution, hardware, system software, and programming language compilers or their runtime systems can trade deviations from correct behavior for lower resource usage. We present, for the first time, a synthesis of researc...
When a computational task tolerates a relaxation of its specification or when an algorithm tolerates the effects of noise in its execution, hardware, system software, and programming language compilers or their runtime systems can trade deviations from correct behavior for lower resource usage. We present, for the first time, a synthesis of researc...
SC-LDPC codes with sub-block locality can be decoded locally at the level of sub-blocks that are much smaller than the full code block, thus providing fast access to the coded information. The same code can also be decoded globally using the entire code block, for increased data reliability. In this paper, we pursue the analysis and design of such...
Because of their capacity-approaching performance and their complexity/latency advantages, spatially-coupled (SC) codes are among the most attractive error-correcting codes for use in modern dense data storage systems. SC codes are constructed by partitioning an underlying block code and coupling the partitioned components. Here, we focus on circul...
A circulant-permutation-based spatially-coupled (SC) code is constructed by partitioning the circulant permutation matrices (CPMs) in the parity-check matrix of a block code into several components and piecing copies of these components in a diagonal structure. By connecting several SC codes, multidimensional SC (MD-SC) codes are constructed. In th...
In this paper, we propose a non-uniform windowed decoder for multi-dimensional spatially-coupled LDPC (MD-SC-LDPC) codes over the binary erasure channel. An MD-SC-LDPC code is constructed by connecting together several SC-LDPC codes into one larger code that provides major benefits over a variety of channel models. In general, SC codes allow for lo...
From currency to cloud storage systems, the continuous rise of the blockchain technology is moving various information systems towards decentralization. Blockchain-based decentralized storage networks (DSNs) offer significantly higher privacy and lower costs to customers compared with centralized cloud storage associated with specific vendors. DSNs...
Graph based codes such as low density parity check (LDPC) codes have been shown promising for the information reconciliation phase in quantum key distribution (QKD). However, existing graph coding schemes have not fully utilized the properties of the QKD channel. In this work, we first investigate the channel statistics for discrete variable (DV) Q...
Crossbar resistive memory with 1S1R structure is attractive for low-cost and high-density nonvolatile memory application. As technology scales down to single-nm regime, the increasing resistivity of wordline/bitline becomes a limiting factor to device reliability. This paper presents write/read communication channels while considering the line resi...
Resistive random-access memory (ReRAM) with the crossbar structure is one promising candidate to be used as a next generation non-volatile memory device. In a crossbar ReRAM, in which a memristor is positioned on each row-column intersection, the sneak-path problem is one of the main challenges for a reliable readout. The sneak-path problem can be...
A circulant-based spatially-coupled (SC) code is constructed by partitioning the circulants in the parity-check matrix of a block code into several components and piecing copies of these components in a diagonal structure. By connecting several SC codes, multi-dimensional SC (MD-SC) codes are constructed. In this paper, we present a systematic fram...
Spatially-coupled (SC) LDPC codes have recently emerged as an excellent choice for error correction in modern data storage and communication systems due to their outstanding performance. It has long been known that irregular graph codes offer performance advantage over their regular counterparts. In this paper, we present a novel combinatorial fram...
A common way to protect data stored in DRAM and related memory systems is through the use of an error-correcting code such as the extended Hamming code. Traditionally, these error-correcting codes provide equal protection guarantees to all messages. In this work, we focus on unequal message protection (UMP), in which a subset of messages is deemed...
Motivated by the sequence reconstruction problem from traces in DNA-based storage, we consider the problem of designing codes for the deletion channel when multiple observations (or traces) are available to the decoder. We propose simple binary and non-binary codes based on Varshamov-Tenengolts (VT) codes. The proposed codes split the codeword in b...
In order to accommodate the ever-growing data from various, possibly independent, sources and the dynamic nature of data usage rates in practical applications, modern cloud data storage systems are required to be scalable, flexible, and heterogeneous. Codes with hierarchical locality have been intensively studied due to their effectiveness in reduc...
In this paper we tackle the problem of file deduplication for efficient data storage. We consider the case where the
deduplication is performed on files that are modified by edit errors relative to the original version. We propose a novel blocklevel
deduplication algorithm with variable-lengths in the case of non-binary alphabets. Compared to hash-...
Because of their capacity-approaching performance and their complexity/latency advantages, spatially-coupled (SC) codes are among the most attractive error-correcting codes for use in modern dense storage devices. SC codes are constructed by partitioning an underlying block code and coupling the partitioned components. Here, we focus on circulant-b...
When a computational task tolerates a relaxation of its specification or when an algorithm tolerates the effects of noise in its execution, hardware, programming languages, and system software can trade deviations from correct behavior for lower resource usage. We present, for the first time, a synthesis of research results on computing systems tha...
A circulant-based spatially-coupled (SC) code is constructed by partitioning the circulants of an underlying block code into a number of components, and then coupling copies of these components together. By connecting (coupling) several SC codes, multi-dimensional SC (MD-SC) codes are constructed. In this paper, we present a systematic framework fo...
In magnetic recording systems, consecutive sections experience different signal-to-noise ratios (SNRs). To perform error correction over these systems, one approach is to use an individual block code for each section. However, the performance over a section affected by a lower SNR is weaker compared to the performance over a section affected by a h...
Enabled by new storage mediums, Computation-in- Memory is a novel architecture that has shown great potential in reducing the burden of massive data processing by bypassing the communication and memory access bottleneck. Suggested by Cassuto and Crammer, allowing for ultra-fast Hamming distance computations to be performed in resistive memory with...
Because of their capacity-approaching performance and their complexity/latency advantages, spatially-coupled (SC) codes are among the most attractive error-correcting codes for use in modern dense storage devices. SC codes are constructed by partitioning an underlying block code and coupling the partitioned components. Here, we focus on circulant-b...
In magnetic-recording systems, consecutive sections experience different signal to noise ratios (SNRs). To perform error correction over these systems, one approach is to use an individual block code for each section. However, a section affected by a lower SNR shows a weaker performance compared to a section affected by a higher SNR. A commonly use...
Permutation codes have recently garnered substantial research interest due to their potential in various applications including cloud storage systems, genome resequencing and flash memories. In this paper, we study the theoretical bounds and constructions of permutation codes in the generalized Cayley metric. The generalized Cayley metric captures...
Spatially-coupled (SC) codes are a family of graph-based codes that have attracted significant attention thanks to their capacity approaching performance and low decoding latency. An SC code is constructed by partitioning an underlying block code into a number of components and coupling their copies together. In this paper, we first introduce a gen...
Two-dimensional magnetic recording (TDMR) is an emerging storage technology that aims to achieve areal densities on the order of 10 Tb/in
<sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup>
, mainly driven by innovative channels engineering with minimal changes to existing head/media designs within...
Modern dense Flash memory devices operate at very low error rates, which require powerful error correcting coding techniques. Here, our focus is on spatially-coupled (SC) codes. We present a three-stage approach for the design of high performance non-binary SC (NB-SC) codes optimized for practical Flash channels; we aim at minimizing the number of...