L. Ben-Said’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (4)


Low temperature dry scrubbing reaction kinetics and mechanisms, Volume 2
  • Article

October 1992

·

3 Reads

M.E. Prudich

·

K.J. Sampson

·

S.N. Reddy

·

[...]

·

L. Ben-Said

A novel wet/dry desulfurization post-Furnace process (ETS' Limestone Emission control (LEC) process) for SO[sub 2] removal has been described by Prudich et al.(1988). In this process hot flue gases are contacted with a bed of quarry-sized (1/4in. to 1/32in.) wet limestone granules. This thesis represents the development of a second generation model of ETS' LEC process. The first generation model developed by Prudich et al.(1988) the use of a fixed limestone bed. The work done on this has been well documented by Appell (1989) and Visneski (1991) process under consideration for this thesis involves a continuously moving limestone bed. The moving bed simplifies the process flowsheet and facilitates limestone reactivation. The moving-bed LEC process involves the use of a cross-flow pattern with the flue gas flowing horizontally across the limestone bed at speeds of around 1 to 2 feet per second and the limestone moving vertically downward through the LEC reactor at speeds of around 1 to 15 feet per hour. The primary parameters considered in the mathematical modeling of the moving-bed LEC process are inlet sulfur dioxide concentration, inlet gas-phase water concentration, inlet flue gas and limestone temperatures and water spray addition rate over the bed. For solution of the process, mass and energy balance equations derived as a function of the positions of the flue gas limestone are solved using a predictor-corrector method. The Adams-Bashforth (modified Euler's) method is used with a second order corrector.


Low temperature dry scrubbing reaction kinetics and mechanisms: Volume 2. Final report, June 1, 1990August 31, 1991

4 Reads

A resistance-in-series kinetic model for the low temperature reaction of sulfur dioxide with limestone is presented. The resistances considered are the gas-phase transport of sulfur dioxide, the liquid-phase diffusion of both the sulfur species and the calcium species and the solid-phase dissolution of limestone. The model uses film theory to predict the liquid concentrations of the dissolved species and assumes an instantaneous reaction between the sulfur species and calcium species. The kinetic model incorporates three rate equations for the removal of sulfur dioxide. When the rate of removal is limited by the diffusion of sulfur dioxide across the gas film surrounding the limestone particle, a gas-phase controlled rate equation is used. When the diffusion of the reacting species through the liquid film covering the limestone particle is the predominant resistance, a liquid-phase controlled rate equation is used. When the rate is limited by the dissolution of limestone, a solid-phase controlled rate equation is used. The kinetic model is incorporated into a flow model for the fixed-bed Limestone Emission Control (LEC) system. The LEC system employs a fixed-bed of standard quarry-sized limestone to remove sulfur dioxide from coal-fired boiler flue gases. The flow modeling equations for the fixed-bed LEC system, which include simultaneous heat and mass transfer as applied to water-phase evaporation and condensation are also presented. The combined kinetic and flow model is subjected to a parametric study and the modeling predictions are compared with experimental results.