Kylie Nairon's research while affiliated with The Ohio State University and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (8)
Primary tumors secrete large quantities of cytokines and exosomes into the bloodstream, which are uptaken at downstream sites and induce a pro-fibrotic, pro-inflammatory premetastatic niche. Niche development is associated with later increased metastatic burden, but the cellular and matrix changes in the niche that facilitate metastasis are yet unk...
Current in vitro 3D models of liver tissue have been limited by the inability to study the effects of specific extracellular matrix (ECM) components on cell phenotypes. This is in part due to limitations in the availability of chemical modifications appropriate for this purpose. For example, hyaluronic acid (HA), which is a natural ECM component wi...
Extracellular vesicles (EVs) have emerged as a promising carrier system for the delivery of therapeutic payloads in multiple disease models, including cancer. However, effective targeting of EVs to cancerous tissue remains a challenge. Here, we show that non-viral transfection of myeloid-derived suppressor cells (MDSCs) can be leveraged to drive ta...
Bioengineered in vitro models have advanced from 2D cultures and simple 3D cell aggregates to more complex organoids and organ-on-a-chip platforms. This shift has been substantial in cancer research; while simple systems remain in use, multi-tissue type tumor and tissue chips and patient-derived tumor organoids have grown rapidly. These more advanc...
Purpose: Due to inadequate early detection and inability to operate at advanced stages, pancreatic ductal adenocarcinoma (PDAC) has remained one of the most difficult types of cancer to treat. A small range of non-specific symptoms coupled with quick metastasis rate result in a poor 5-year survival rate; 14% for those diagnosed within stage IA, and...
p>Purpose: Due to inadequate early detection and inability to operate at advanced stages, pancreatic ductal adenocarcinoma (PDAC) has remained one of the most difficult types of cancer to treat. A small range of non-specific symptoms coupled with quick metastasis rate result in a poor 5-year survival rate; 14% for those diagnosed within stage IA, a...
Purpose: Pancreatic cancer remains an unsolved health issue, with its rapid progression and resistance to modern therapy leading to poor prognoses for most patients. The prevalence of metastasis in pancreatic cancer makes complete tumor location and removal rare, and those who do have resectable disease have only a 20% 5-year survival rate. In rece...
Citations
... [22][23][24][25] Previous efforts showed that 3D bioprinting technology can be used to arrange tumor spheroids and organoids for various applications like drug screening and tissue engineering. [26][27][28][29][30][31][32][33][34] Although 3D bioprinting technology can achieve multi-size, multi-material, and multi-cell printing tasks, it limits in the precise construction. [22,[35][36][37] Here, we used an acoustic bioprinting device to precisely arrange colorectal cancer (CRC) and healthy organoids into 3D architecture for mimicking the diseased colorectum of patient. ...
... 46 This makes it possible for enzymes to directly activate the NP system at the tumour spot. 46,47 For enzymatic activation systems, a variety of cellular enzymes have been used, including cathepsins, matrix metalloproteinases (MMPs), 48,49 protein tyrosine kinase-7 (PTK-7), and telomerase. 46,50 ...