Kendall L. Mashburn’s research while affiliated with University of Alaska Fairbanks and other places
What is this page?
This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.
Humpback whales (Megaptera novaeangliae) in Southeast Alaska have been studied for over 50 years, and are largely considered a recovery success since the cessation of commercial whaling. Reproductive physiology is an important factor to consider in studying population health and can provide important insights into the drivers contributing to population abundance fluctuations. Validated assays for progesterone and testosterone were used on blubber biopsies from humpback whales (N = 33 whales, 71 samples) near Juneau, Alaska, in 2020 and 2021. Long-term sighting histories were used to confirm detected pregnancies with calf sightings the following year. Blubber samples were divided into two seasonal bins (early and late summer). Pregnant females sampled in both early and late summer of both 2020 and 2021 showed elevated progesterone concentrations compared to other reproductive states (p
To better understand reproductive physiology of humpback whales Megaptera novaeangliae that reside in Hawai’i and Alaska, enzyme immunoassays were validated for both progesterone and testosterone in free-ranging and stranded animals (n = 185 biopsies). Concentrations were analyzed between different depths of large segments of blubber taken from skin to muscle layers of stranded female (n = 2, 1 pregnant, 1 non-pregnant) and male (n = 1) whales. Additionally, progesterone metabolites were identified between pregnant (n = 1) and non-pregnant (n = 3) females using high pressure liquid chromatography (HPLC). Progesterone concentrations were compared between juvenile (i.e., sexually immature), lactating, and pregnant females, and male whales, and pregnancy rates of sexually mature females were calculated. Based on replicate samples from ship struck animals collected at 7 depth locations, blubber containing the highest concentration of progesterone was located 1 cm below the skin for females, and the highest concentration of testosterone was in the skin layer of one male whale. HPLC of blubber samples of pregnant and non-pregnant females contain different immunoreactive progesterone metabolites, with the non-pregnant female eluate comprised of a more polar, and possibly conjugated, form of progesterone than the pregnant female. In females, concentrations of progesterone were highest in the blubber of pregnant (n = 28, 28.6 ± 6.9 ng/g), followed by lactating (n = 16, 0.9 ± 0.1 ng/g), and female juvenile (n = 5, 1.0 ± 0.2 ng/g) whales. Progesterone concentrations in male (n = 24, 0.6 ng/g ± 0.1 ng/g) tissues were the lowest all groups, and not different from lactating or juvenile females. Estimated summer season pregnancy rate among sexually mature females from the Hawai’i stock of humpback whales was 0.562 (95% confidence interval 0.528–0.605). For lactating females, the year-round pregnancy rate was 0.243 (0.09–0.59), and varies depending on the threshold of progesterone assumed for pregnancy in the range between 3.1 and 28.5 ng/g. Our results demonstrate the synergistic value added when combining immunoreactive assays, HPLC, and long-term sighting histories to further knowledge of humpback whale reproductive physiology.
Beluga whales (Delphinapterus leucas) from Cook Inlet (CI), Alaska, are listed as “endangered” because of dramatic declines in abundance, with no indications of population recovery. Serum samples from this population are exceedingly rare. Longitudinal samples from aquarium (AQ) belugas can potentially provide health assessment reference ranges for free-ranging beluga, including reproductive and metabolic hormones. We analysed serum hormone concentrations from CI (n = 6, three females and three males) and Bristol Bay (Alaska; BB; n = 5, four males and one female), alongside AQ (n = 3, two females and one male) belugas, to conduct physiological comparisons of reproductive hormones (progesterone, testosterone and total oestrogens) and metabolic hormones (total thyroxine, triiodothyronine and cortisol) in beluga serum. Oestrogen and progesterone profiles from January through May from two AQ female beluga were typical of non-pregnant, cycling females. CI and BB sex steroid concentrations were within AQ hormone ranges, with the exception of elevated progesterone concentrations in four potentially pregnant females. Both CI and BB belugas had elevated metabolic hormones, which may indicate greater metabolic effort required in the wild environment or capture response. Because sample collection from CI belugas is rare, analysis of even the few samples that we analysed may contribute to the conservation of the small and declining population of genetically distinct CI beluga whales. It is important that each sample collected from free-range CI belugas provides the maximum biological information possible. Continued comparison of hormones in AQ and free-ranging beluga will enhance the interpretation of health data in both groups.
... This strategy could be reflected in the discrepancies between pregnancy and calving rates reported on humpback whale feeding grounds. For example, recent studies in the Gulf of St Lawrence and Southeast Alaska have reported calving rates 20-50% lower than pregnancy rates from the preceding year (Atkinson, Branch et al., 2023;Atkinson, Melica et al., 2023;Kershaw et al., 2021). These discrepancies, however, could result from either mortality during pre-and postnatal periods or methodological differences. ...
... This strategy could be reflected in the discrepancies between pregnancy and calving rates reported on humpback whale feeding grounds. For example, recent studies in the Gulf of St Lawrence and Southeast Alaska have reported calving rates 20-50% lower than pregnancy rates from the preceding year (Atkinson, Branch et al., 2023;Atkinson, Melica et al., 2023;Kershaw et al., 2021). These discrepancies, however, could result from either mortality during pre-and postnatal periods or methodological differences. ...
... The onset of reproductive behavior in adult male belugas is driven by a seasonal increase in testosterone as established by research conducted with belugas in managed care [38,51,69,87,88,92,95]. In managed care, this seasonal increase in testosterone begins with increases in testes size and occurs about two months before reproductive behaviors are exhibited and appears to correspond to spermatogenesis in preparation for the breeding season [38,51,69,87,88,92,95]. ...