Junming Xu’s research while affiliated with Northeast Forestry University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


Study on the Macroscopic Properties and Microstructure of High Fly Ash Content Alkali-Activated Fly Ash Slag Concrete Cured at Room Temperature
  • Article
  • Full-text available

January 2025

·

13 Reads

Materials

Zhu Yuan

·

·

Xuanben Xie

·

Junming Xu

Fly ash and granulated blast furnace slag are both bulk industrial solid wastes. Using these two raw materials to completely replace cement and prepare alkali-activated fly ash slag concrete (AAFSC) at room temperature can not only efficiently utilize industrial solid waste and reduce the carbon footprint, but also reduce the economic cost and technical difficulty of construction, which is of great significance for promoting the sustainable development of the concrete industry. In this article, the content of fly ash accounted for 80% of the total precursor (fly ash + slag), and a mixed solution of sodium silicate and sodium hydroxide was used as alkali activator to prepare AAFSC by curing at room temperature. The effects of alkali equivalent and activator modulus on compressive strength, impermeability, water absorption, and microstructure were systematically studied and compared with ordinary Portland cement concrete. The conclusions drawn were as follows. The 7-day compressive strength of AAFSC was lower than that of cement concrete, while its 28-day compressive strength was 104.86% to 131.94% of that of cement concrete. AAFSC exhibited excellent impermeability protection performance. The water absorption rate of AAFSC was lower, with A8M1 having a water absorption rate of 2.13%, which was only 60.86% of cement concrete. Through microscopic analysis, it was found that the alkali-activated fly ash slag cementitious matrix had good bonding with the aggregate, and there existed fly ash particles with different degrees of reaction. The Ca/Si value of AAFSC was smaller than that of cement concrete.

Download

Figure 12. Weight loss of AAFSC during freeze-thaw cycles.
Figure 13. RDME ratio of AAFSC after freeze-thaw cycles.
Figure 15. Compressive strength and porosity of AAFSC after freeze-thaw cycles.
Figure 16. Distribution of pore size of AAFSC after freeze-thaw cycles.
Chemical components of fly ash and slag [42].

+3

Study on the Improvement Effect of Polypropylene Fiber on the Mechanical Properties and Freeze–Thaw Degradation Performance of High Fly Ash Content Alkali-Activated Fly Ash Slag Concrete

January 2025

·

14 Reads

Polymers

This article systematically investigated the improvement effect of polypropylene fiber (PPF) on the mechanical and freeze–thaw properties of alkali-activated fly ash slag concrete (AAFSC) with high fly ash content and cured at room temperature. Fly ash and slag were used as precursors, with fly ash accounting for 80% of the total mass. A mixed solution of sodium hydroxide and sodium silicate was used as alkali activator, and short-cut PPF was added to improve the performance of AAFSC. Firstly, the strength characteristics of AAFSC at different curing ages were studied. Then, key indicators such as morphology, residual compressive strength, weight loss, relative dynamic modulus of elasticity (RDME), and pore characteristics of AAFSC after different freeze–thaw cycles were tested and analyzed. The strength performance analysis showed that the optimal dosage of PPF was 0.90%. When the alkali equivalent of the alkali activator was increased from 4% to 6%, the frost resistance of AAFSC could be improved. Furthermore, adding 0.90% PPF could increase the freeze–thaw cycle number of AAFSC by about 50 times (measured by RDME). With the increase in freeze–thaw cycles, the porosity of AAFSC increased, the fractal dimension decreased, and the proportion of harmless and less harmful pores decreased, while the proportion of harmful and multiple harmful pores increased. The relationship model between the porosity and compressive strength of AAFSC after freeze–thaw cycles was established.