Joshua S. Madin's research while affiliated with University of Hawai'i System and other places

Publications (150)

Article
Full-text available
Traits have become a crucial part of ecological and evolutionary sciences, helping researchers understand the function of an organism's morphology, physiology, growth and life history, with effects on fitness, behaviour, interactions with the environment and ecosystem processes. However, measuring, compiling and analysing trait data comes with data...
Preprint
Coral bleaching and mortality can show significant spatial and taxonomic heterogeneity at local scales, highlighting the need to understand the fine-scale drivers and impacts of thermal stress. In this study, we used structure-from-motion photogrammetry to track coral bleaching, mortality, and changes in community composition during the 2019 marine...
Article
Full-text available
Insights into assemblages that can persist in extreme environments are still emerging. Ocean warming and acidification select against species with low physiological tolerance (trait‐based ‘filtering’). However, intraspecific trait variation can promote species adaptation and persistence, with potentially large effects on assemblage structure. By sa...
Article
Life‐history traits are promising tools to predict species commonness and rarity because they influence a population's fitness in a given environment. Yet, species with similar traits can have vastly different abundances, challenging the prospect of robust trait‐based predictions. Using long‐term demographic monitoring, we show that coral populatio...
Article
Full-text available
Abstract Spatial genetic structure (SGS) is important to a population’s ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef buildi...
Article
Full-text available
The structure of an ecosystem is usually determined by the shape of the organisms that build it, commonly known as ecosystem engineers. Understanding to what extent plasticity and environmental filtering determine variation in the physical structure of ecosystem engineers is necessary to predict how ecosystem structure may change. Here, we explored...
Article
Full-text available
Trait databases have become important resources for large-scale comparative studies in ecology and evolution. Here we introduce the AnimalTraits database, a curated database of body mass, metabolic rate and brain size, in standardised units, for terrestrial animals. The database has broad taxonomic breadth, including tetrapods, arthropods, molluscs...
Article
Full-text available
The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of th...
Article
Full-text available
The structural complexity of coral reefs provides important ecosystem functions, such as wave attenuation for coastal protection, surfaces for coral growth, and habitat for other organisms. Corals build much of this structure, but an understanding of how colonies of different species and sizes contribute to complexity is lacking. We quantified thre...
Article
People’s preferences and choices around food directly influence their resource use and the resilience of dynamically linked natural and human systems. In this study we examine fish preference and consumption patterns in Dhaalu atoll, Maldives, where fisheries have experienced rapid change in response to tourism and development. We find that reef fi...
Article
Full-text available
Reef-building corals show a marked decrease in total species richness from the tropics to high latitude regions. Several hypotheses have been proposed to account for this pattern in the context of abiotic and biotic factors, including temperature thresholds, light limitation, aragonite saturation, nutrient or sediment loads, larval dispersal constr...
Preprint
Full-text available
Humans have long sought to restore species, but little attention has been directed at how to best select a subset of foundation species for maintaining rich assemblages that support ecosystems, like coral reefs and rainforests that are increasingly threatened by environmental change. We propose a two-part hedging approach that selects optimized set...
Preprint
Full-text available
The process of coral recruitment is crucial to the healthy functioning of coral reef ecosystems, as well as recovery following disturbances. Fishes are key modulators of this process by feeding on algae and other benthic taxa that compete with corals for benthic space. However, foraging strategies within reef fish assemblages are highly diverse and...
Article
Quantitative traits such as maximum growth rate and cell radial diameter are one facet of ecological strategy variation across bacteria and archaea. Another facet is substrate-use pathways, such as iron reduction or methylotrophy. Here we ask how these two facets intersect, using a large compilation of data for culturable species and examining seve...
Preprint
Full-text available
Niche construction is the process through which organisms modify environmental states in ways favourable to their own fitness. Here, we test experimentally whether scleractinian corals can be considered niche constructors. In particular, we demonstrate a positive feedback involved in corals building structures which facilitate recruitment. Coral la...
Preprint
Full-text available
Spatial genetic structure (SGS) is important to a population’s ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef building corals...
Article
Full-text available
Climate change is causing the distribution and abundance of many organisms to change. In particular, organisms typical of the tropics are increasing in abundance in many subtropical regions, a process known as tropicalization. Here, we examine changes in coral abundance and assemblage structure in the Solitary Islands Marine Park (SIMP), over a 23-...
Preprint
Full-text available
The structure of ecosystems is usually determined by the shape of the organisms that build it, commonly known as ecosystem engineers. Understanding to what extent plasticity and environmental filtering determine variation in ecosystem engineer physical structure is necessary to predict how ecosystem structure may change. Here, we explored coral sur...
Article
Full-text available
Bacteria and archaea have very different ecology compared to plants. One similarity, though, is that much discussion of their ecological strategies has invoked concepts such as oligotrophy or stress tolerance. For plants, so‐called ‘trait ecology’—strategy description reframed along measurable trait dimensions—has made global syntheses possible. Am...
Data
Supplementary Appendixes S1-S2 linked to the article: Gómez-Gras D, Linares C, Dornelas M, Madin JS, Brambilla V, Ledoux J-B, López-Sendino P, Bensoussan N, Garrabou J (2021) Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Ecology Letters.
Data
Supplementary Tables S1_S5 linked to the article: Gómez-Gras D, Linares C, Dornelas M, Madin JS, Brambilla V, Ledoux J-B, López-Sendino P, Bensoussan N, Garrabou J (2021) Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Ecology Letters.
Data
Supplementary Figures S1_S7 linked to the article: Gómez-Gras D, Linares C, Dornelas M, Madin JS, Brambilla V, Ledoux J-B, López-Sendino P, Bensoussan N, Garrabou J (2021) Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Ecology Letters.
Article
Full-text available
Quantifying changes in functional community structure driven by disturbance is critical to anticipate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect the functional structure of temperate coral‐dominated communities is poorly understood. Here, we used five long‐term (> 10 years) records of Mediterranean corall...
Article
Full-text available
Structure-from-motion (SfM) photogrammetry is a technique used to generate three-dimensional (3D) reconstructions from a sequence of two-dimensional (2D) images. SfM methods are becoming increasingly popular as a noninvasive way to monitor many systems, including anthropogenic and natural landscapes, geologic structures, and both terrestrial and aq...
Article
Full-text available
Among bacteria and archaea, maximum relative growth rate, cell diameter, and genome size are widely regarded as important influences on ecological strategy. Via the most extensive data compilation so far for these traits across all clades and habitats, we ask whether they are correlated and if so how. Overall, we found little correlation among them...
Article
Full-text available
The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spaw...
Article
Full-text available
A recent compilation of traits across culturable species of bacteria and archaea allows relationships to be quantified between genome size and other traits and habitat. Cell morphology, size, motility, sporulation and doubling time were not strongly correlated with genome size. Aerobic species averaged ca 35% larger genomes than anaerobic, adjusted...
Article
Full-text available
Structurally complex habitats tend to contain more species and higher total abundances than simple habitats. This ecological paradigm is grounded in first principles: species richness scales with area, and surface area and niche density increase with three-dimensional complexity. Here we present a geometric basis for surface habitats that unifies e...
Article
High turnover leads to novel combinations of species and involves high extinction
Article
Full-text available
Many life history traits relate to trade-offs among an organism’s energy investments in growth, reproduction, and maintenance, as well as to fundamental physiological processes or body size. Other traits reflect affordances, or possibilities enabled by an investment strategy. In scleractinian corals, growth and reproduction have been studied to a m...
Article
Full-text available
Abstract The relative roles of top‐down (consumer‐driven) and bottom‐up (resource‐driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation‐induced, top‐down trophic forcing have led to a general view that human‐induced predator perturbations can disrupt entire marine food webs,...
Article
Full-text available
A synthesis of phenotypic and quantitative genomic traits is provided for bacteria and archaea, in the form of a scripted, reproducible workflow that standardizes and merges 26 sources. The resulting unified dataset covers 14 phenotypic traits, 5 quantitative genomic traits, and 4 environmental characteristics for approximately 170,000 strain-level...
Article
Full-text available
Half of coral species that occur on Caribbean reefs have also been reported living in mangroves. Given the vulnerability of corals living on reefs to environmental change, populations of the same species living in mangroves may prove critical to long-term survival of these coral species and the resilience of nearby reefs. To date, few studies have...
Preprint
Reef-building coral assemblages are typically species-rich, yet the processes maintaining coral biodiversity remain poorly understood. Disturbance has long been believed to promote coral species coexistence by reducing the strength of competition. However, such disturbance-induced effects have since been shown to be insufficient on their own to pre...
Article
Full-text available
Comparative lists of species’ extinction risk are increasingly being used to prioritise conservation resources. Extinction risk is most rigorously assessed using quantitative data on species’ population trajectories, but in the absence of such data, assessments often rely on qualitative estimates based on expert opinion of species abundances, distr...
Article
Full-text available
This erratum is published as vendor overlooked corrections with misspelt scientific wording of family Siderastreidae.
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress t...
Preprint
Full-text available
Structurally complex habitats tend to contain more species and higher total abundances than simple habitats. This ecological paradigm is grounded in first principles: species richness scales with area, and surface area and niche density increase with three-dimensional complexity. Here we present a geometric basis for surface habitats that unifies e...
Article
Body size is a trait that broadly influences the demography and ecology of organisms. In unitary organisms, body size tends to increase with age. In modular organisms, body size can either increase or decrease with age, with size changes being the net difference between modules added through growth and modules lost through partial mortality. Rates...
Article
Full-text available
Coral morphology has important implications across scales, from differences in physiology, to the environments they are found, through to their role as ecosystem engineers. However, quantifying morphology across taxa is difficult, and so morphological variation is typically captured via coarse growth form categories (e.g. arborescent and massive)....
Article
Earth‐based observations of the biosphere are spatially biased in ways that can limit our ability to detect macroecological patterns and changes in biodiversity. To resolve this problem, we need to supplement the ad hoc data currently collected with planned biodiversity monitoring, in order to approximate global stratified random sampling of the pl...
Article
Rapid intensification of environmental disturbances has sparked widespread decline and compositional shifts in foundation species in ecosystems worldwide. Now, an emergent challenge is to understand the consequences of shifts and losses in such habitat‐forming species for associated communities and ecosystem processes. Recently, consecutive coral b...
Article
Susceptibility to human‐driven environmental changes are mediated by species traits. Therefore, identifying traits that predict organism performance, ecosystem function, and response to changes in environmental conditions can help forecast how ecosystems are responding to the Anthropocene. Morphology dictates how organisms interact with their envir...
Article
Changes in abundance across a natural environmental gradient provide important insights into a species’ realized ecological niche. In reef‐building corals, a species’ niche is often defined using its depth range. However, most reef‐building coral species occur over a broad depth range, a fact that is incompatible with the strong zonation found in c...
Article
Full-text available
Marine reserves can effectively restore harvested populations, and ‘mega-reserves’ increasingly protect large tracts of ocean. However, no method exists of monitoring ecological responses at this large scale. Herbivory is a key mechanism structuring ecosystems, and this consumer–resource interaction's strength on coral reefs can indicate ecosystem...
Preprint
Full-text available
Synthesising trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Despite the well-recognised importance of traits for addressing ecological and evolutionary questions, trait-based approaches still struggle with several basic data requirements to deliver openly accessible, reproducible, and tr...
Article
Full-text available
Changes in disturbance regimes due to climate change are increasingly challenging the capacity of ecosystems to absorb recurrent shocks and reassemble afterwards, escalating the risk of widespread ecological collapse of current ecosystems and the emergence of novel assemblages1–3. In marine systems, the production of larvae and recruitment of funct...
Preprint
Full-text available
The morphology of coral colonies has important implications for their biological and ecological performance, including their role as ecosystem engineers. However, given that morphology is difficult to quantify across many taxa, morphological variation is typically shoehorned into coarse growth form categories (e.g., arborescent and digitate). In th...
Article
Disturbances, such as cyclones, have a major effect on the structure and dynamics of coral reef assemblages. However, the effect of cyclones on demographic traits, such as fecundity, has rarely been quantified, and direct estimates of mortality at the species level are rare. Here, we document the effect of Severe Tropical Cyclone Nathan on the demo...
Article
Coral reefs are being subjected to an increase in the frequency and intensity of disturbance, such as bleaching and cyclones, and it is important to document the effects of such disturbance on reef coral assemblages. Between March 2014 and May 2017, the reefs of Lizard Island in the northern section of the Great Barrier Reef were affected by 4 cons...
Article
Coral reefs are under increasing threat from increasing warm temperature stress. Coral bleaching is caused by a combination of heat and light anomalies and therefore fewer corals should bleach in areas where either heat or light anomalies are ameliorated, such as in turbid waters or at depth. Here, we explore the overall response of the coral assem...
Article
Full-text available
Coral bleaching as a response to increased sea surface temperature is regularly surveyed, but our understanding of species-specific differences in response is limited. We compiled bleaching response data for multiple warming events in which corals were identified to species and then quantified the relationship between species’ traits and their gene...
Article
Full-text available
Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time se...
Article
Full-text available
Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time se...
Article
Full-text available
Coral bleaching events have caused extensive mortality on reefs around the world. Juvenile corals are generally less affected by bleaching than their conspecific adults and therefore have the potential to buffer population declines and seed recovery. Here, we use juvenile and adult abundance data at 20 sites encircling Lizard Island, Great Barrier...
Article
Full-text available
Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community led open-source database of biodiversity time se...
Article
Full-text available
In a changing global environment, previously suboptimal habitats may become climate refuges for species. For instance, the ranges of some tropical reef corals are already expanding poleward. Understanding the demographic strategies by which isolated or marginal populations persist is therefore important, especially since such populations are often...