José Antonio Rivas-Navarrete’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


Overview of the systematic approach
Sound capture devices used. (a) Developed electronic stethoscope, (b) Desktop microphone
Architecture of the proposal for the Raspberry Pi
Architecture of the proposal for the Smartphone
Comparison of an original and silent cough sound

+9

Edge Computing System for Automatic Detection of Chronic Respiratory Diseases Using Audio Analysis
  • Article
  • Publisher preview available

March 2025

·

37 Reads

Journal of Medical Systems

José Antonio Rivas-Navarrete

·

·

·

[...]

·

Diana Cristina García-Cambero

Chronic respiratory diseases affect people worldwide, but conventional diagnostic methods may not be accessible in remote locations far from population centers. Sounds from the human respiratory system have displayed potential in autonomously detecting these diseases using artificial intelligence (AI). This article outlines the development of an audio-based edge computing system that automatically detects chronic respiratory diseases (CRDs). The system utilizes machine learning (ML) techniques to analyze audio recordings of respiratory sounds (cough and breath) and classify the presence or absence of these diseases, using features such as Mel frequency cepstral coefficients (MFCC) and chromatic attributes (chromagram) to capture the relevant acoustic features of breath sounds. The system was trained and tested using a dataset of respiratory sounds collected from 86 individuals. Among them, 53 had chronic respiratory conditions, including asthma and chronic obstructive pulmonary disease (COPD), while the remaining 33 were healthy. The system’s final evaluation was conducted with a group of 13 patients and 22 healthy individuals. Our approach demonstrated high sensitivity and specificity in the classification of sounds on edge devices, including smartphone and Raspberry Pi. Our best results for CRDs reached a sensitivity of 90.0%, a specificity of 93.55%, and a balanced accuracy of 91.75% for accurately identifying individuals with both healthy and diseased. These results showcase the potential of edge computing and machine learning systems in respiratory disease detection. We believe this system can contribute to developing efficient and cost-effective screening tools.

View access options