November 2021
·
91 Reads
·
7 Citations
Integrating Materials and Manufacturing Innovation
During laser melting of metals, localized metal evaporation resulting in the formation of a keyhole shaped cavity can occur if processing conditions are chosen with high power density. An unstable keyhole can have deleterious effects in certain applications (e.g., laser powder bed fusion) as it increases the likelihood of producing defects such as porosity. In this work, we propose a pipeline that enables complete segmentation and extraction of various geometric features in keyholing conditions. In situ synchrotron high-speed X-ray visualization at the Advanced Photon Source provides large datasets of experimental images with a high spatio-temporal resolution across a range of laser parameters for Ti-6Al-4V. Computer vision image processing techniques were used to extract time-resolved quantitative geometric features (e.g., depth, width, front wall angle) throughout keyhole evolution which were subsequently analyzed to understand the relationship between the variation of local keyhole geometry and processing conditions. This analysis is the first to employ a data-driven approach to further our understanding of the keyholing process regime.