John P. Grotzinger's research while affiliated with California Institute of Technology and other places

Publications (546)

Article
Full-text available
The Glen Torridon (GT) region in Gale crater, Mars is a region with strong clay mineral signatures inferred from orbital spectroscopy. The CheMin X‐ray diffraction (XRD) instrument onboard the Mars Science Laboratory rover, Curiosity, measured some of the highest clay mineral abundances to date within GT, complementing the orbital detections. GT ma...
Article
Full-text available
Large sedimentary basins contain archives of Earth history. It is unknown to what extent similar basins existed on Mars because there are few observations relating to the subsurface and it is difficult to identify buried deposits. Here, we used numerical simulations to show that landscapes of networks of topographic ridges that are abundant on the...
Article
Full-text available
The Glen Torridon (GT) region within Gale crater, Mars, occurs in contact with the southern side of Vera Rubin ridge (VRR), a well‐defined geomorphic feature that is comparatively resistant to erosion. Prior to detailed ground‐based investigation of GT, its geologic relationship with VRR was unknown. Distinct lithologic subunits within the Jura mem...
Article
The preservation of organic biosignatures during the Proterozoic Eon required specific taphonomic windows that could entomb organic matter to preserve amorphous kerogen and even microbial body fossils before they could be extensively degraded. Some of the best examples of such preservation are found in early diagenetic chert that formed in peritida...
Conference Paper
Full-text available
The stratigraphy preserved within Aeolis Mons (Mount Sharp) in Gale crater (Mars) shows a major transition from mudstone-rich strata (with subordinate sandstones) recording deposition in lacustrine to fluvial settings into a major sulphate-bearing unit (the Layered Sulphate-bearing unit (LSu)) [1, 2]. This transition is interpreted to represent a m...
Conference Paper
Full-text available
A full list of authors appears at the end of the abstract NASA's Mars 2020 Perseverance rover mission is seeking signs of ancient life in Jezero crater and is collecting a cache of Martian rock and soil samples for planned return to Earth by a future mission. A key exploration target for the mission is a prominent sedimentary fan deposit at the wes...
Article
The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigate the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the P...
Article
Full-text available
This study utilizes instruments from the Curiosity rover payload to develop an integrated paleoenvironmental and compositional reconstruction for the 65‐m thick interval of stratigraphy comprising the Hartmann's Valley and Karasburg members of the Murray formation, Gale crater, Mars. The stratigraphy consists of cross‐stratified sandstone (Facies 1...
Article
Full-text available
The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to...
Article
Full-text available
Sedimentary rocks record the ancient climate of Mars through changes between subaqueous and eolian depositional environments, recognized by their stratal geometries and suites of sedimentary structures. Orbiter‐ and rover‐image‐based geologic mapping show a dynamic evolution of the 5‐km‐thick sedimentary sequence exposed along the flanks of Aeolis...
Article
We present a synthesis of PIXL elemental data and SHERLOC Raman spectra collected on two targets investigated by the Perseverance rover during the first year of its exploration of Jezero Crater, Mars. The Bellegarde target (in the Máaz formation) and Dourbes target (in the Séítah formation) exhibit distinctive mineralogies that are an ideal case st...
Article
Among the earliest consequences of climate change are extreme weather and rising sea levels—two challenges to which coastal environments are particularly vulnerable. Often found in coastal settings are microbial mats—complex, stratified microbial ecosystems that drive massive nutrient fluxes through biogeochemical cycles and have been important con...
Conference Paper
Full-text available
Orbital and rover observations of relict geomorphic features and stratigraphic architectures indicate Mars once had a warmer, wetter climate. Constraining the character, relative timing and persistence of ancient aqueous activity on Mars is possible through detailed interrogation of the stratal geometry of aqueously deposited sedimentary bodies. Su...
Conference Paper
Full-text available
The Perseverance rover landed on the floor of Jezero crater on 18 February 2021. The landing site, named “Octavia E. Butler” is located ~2.2 km from the SE-facing erosional scarp of the western fan deposits, which are of strong interest for the mission [1-2]. Images obtained using the Mastcam-Z camera and the Remote Micro-Imager (RMI) of the SuperC...
Conference Paper
Full-text available
The Stimson formation (Siccar Point group) is recognized to represent a major change in depositional style and climate within Gale crater during the Hesperian period [1,2,3,4]. Deposition in Gale was dominated by aqueous processes in what is interpreted to be a relatively humid climate prior to Stimson formation accumulation [5]. A depositional hia...
Article
Full-text available
Aeolis Mons (informally, Mount Sharp) exhibits a number of canyons, including Gediz and Sakarya Valles. Poorly sorted debris deposits are evident on both canyon floors and connect with debris extending down the walls for canyon segments that cut through sulfate-bearing strata. On the floor of Gediz Vallis, debris overfills a central channel and mer...
Article
Full-text available
Methods developed to explore the luminescent properties of the moon facilitated the development of techniques to infer terrestrial solar-induced chlorophyll fluorescence (SIF) from satellite instruments. While single SIF retrievals are inherently noisy, averaging many retrievals allows us to obtain highly accurate estimates. We analyzed several yea...
Article
Perseverance images of a delta on Mars The Perseverance rover landed in Jezero crater, Mars, in February 2021. Earlier orbital images showed that the crater contains an ancient river delta that was deposited by water flowing into a lake billions of years ago. Mangold et al . analyzed rover images taken shortly after landing that show distant cliff...
Article
Full-text available
The paragenesis of carbonate pseudomorphic textures in the rock record that are inferred to represent replaced metastable ikaite (CaCO3·6H2O), which forms at frigid temperatures, is uncertain. Petrographic analysis of Mono Lake (California, USA) Pleistocene tufas allowed recognition of a distinctive calcite microtexture, termed guttulatic calcite,...
Article
Full-text available
Curiosity, the Mars Science Laboratory (MSL) rover, landed on Mars in August 2012 to investigate the ~3.5-billion-year-old (Ga) fluvio-lacustrine sedimentary deposits of Aeolis Mons (informally known as Mount Sharp) and the surrounding plains (Aeolis Palus) in Gale crater. After nearly nine years, Curiosity has traversed over 25 km, and the Chemist...
Article
Full-text available
Modified clay minerals on Mars Sedimentary rocks exposed in Gale crater on Mars contain extensive clay minerals. Bristow et al. analyzed drill samples collected by the Curiosity rover as it climbed up sedimentary layers in the crater. They found evidence of past reactions with liquid water and sulfate brines, which could have percolated through the...
Article
Full-text available
Magnesium carbonates have been identified within the landing site of the Perseverance rover mission. This study reviews terrestrial analog environments and textural, mineral assemblage, isotopic, and elemental analyses that have been applied to establish formation conditions of magnesium carbonates. Magnesium carbonates form in 5 distinct settings:...
Article
The recognition of past habitable environments on Mars has increased the urgency to understand biosignature preservation in and characterize analogues of these environments on Earth. In this Review, we examine the detection and interpretation of potential biosignatures preserved in deposits rich in carbonates, silica and clay. Many of the earliest...
Article
Full-text available
Microbialites accrete where environmental conditions and microbial metabolisms promote lithification, commonly through carbonate cementation. On Little Ambergris Cay, Turks and Caicos Islands, microbial mats occur widely in peritidal environments above ooid sand but do not become lithified or preserved. Sediment cores and porewater geochemistry ind...
Article
Full-text available
Lithified aeolian strata encode information about ancient planetary surface processes and the climate during deposition. Decoding these strata provides insight regarding past sediment transport processes, bedform kinematics, depositional landscape, and the prevailing climate. Deciphering these signatures requires detailed analysis of sedimentary ar...
Article
Full-text available
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and co...
Preprint
Full-text available
The Planetary Instrument for X-ray Lithochemistry (PIXL) is a micro-focus X-ray fluorescence spectrometer mounted on the robotic arm of NASA's Perseverance rover. PIXL will acquire high spatial resolution observations of rock and soil chemistry, rapidly analyzing the elemental chemistry of a target surface. In 10 seconds, PIXL can use its powerful...
Conference Paper
Mastcam-Z is a high-heritage imaging system aboard NASA's Mars 2020 Perseverance rover that is based on the successful Mastcam investigation on the Mars Science Laboratory (MSL) Curiosity rover. It has all the capabilities of MSL Mastcam, and is augmented by a 4:1 zoom capability that will significantly enhance its stereo imaging performance for sc...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1007/s11214-021-00801-2
Article
The Ediacaran age (ca. 570 Ma) Shuram excursion, a ca. 12 depletion in δ 13 C carb , may record a dramatic oxidation of marine sediments associated with a reorganization of Earth's carbon cycle closely preceding the rise of large metazoans. However, several geochemical indicators suggest it may instead record secondary processes affecting the sedim...
Article
Full-text available
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared...
Article
Full-text available
Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission’s Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (1...
Article
Full-text available
The Ediacaran age (ca. 570 Ma) Shuram excursion, a ca. 12‰ depletion in δ¹³C_(carb), may record a dramatic oxidation of marine sediments associated with a reorganization of Earth’s carbon cycle closely preceding the rise of large metazoans. However, several geochemical indicators suggest it may instead record secondary processes affecting the sedim...
Conference Paper
Full-text available
Curiosity’s southward traverse up the lower north slope of Mt. Sharp (in Gale crater, Mars) and across Glen Torridon has brought it in contact with the organics-bearing sediments of the Knockfarril Hill member, the light-toned, nodule-rich strata found at Western, Central, and Tower buttes, and to the abrupt truncation of these altered Murray sedim...
Article
Full-text available
This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge and summarizes the science results. Vera Rubin ridge (VRR) is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mt. Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a he...
Article
Full-text available
Planetary Instrument for X-ray Lithochemistry (PIXL) is a micro-focus X-ray fluorescence spectrometer mounted on the robotic arm of NASA’s Perseverance rover. PIXL will acquire high spatial resolution observations of rock and soil chemistry, rapidly analyzing the elemental chemistry of a target surface. In 10 seconds, PIXL can use its powerful 120...
Article
Full-text available
Images from the Mars Science Laboratory (MSL) mission of lacustrine sedimentary rocks of Vera Rubin ridge on “Mt. Sharp” in Gale crater, Mars, have shown stark color variations from red to purple to gray. These color differences cross‐cut stratigraphy and are likely due to diagenetic alteration of the sediments after deposition. However, the chemis...
Article
Full-text available
Extraformational sediment recycling (old sedimentary rock to new sedimentary rock) is a fundamental aspect of Earth's geological record; tectonism exposes sedimentary rock, whereupon it is weathered and eroded to form new sediment that later becomes lithified. On Mars, tectonism has been minor, but two decades of orbiter instrument-based studies sh...
Preprint
Full-text available
Microbialites accrete where environmental conditions and microbial metabolisms promote lithification, commonly through carbonate cementation. On Little Ambergris Cay, Turks and Caicos Islands, microbial mats occur widely in peritidal environments above ooid sand, but they do not become lithified or preserved. Sediment cores and porewater geochemist...
Article
Full-text available
Microbial mats are taxonomically and metabolically diverse microbial ecosystems, with a characteristic layering that reflects vertical gradients in light and oxygen availability. Silicified microbial mats in Proterozoic carbonate successions are generally interpreted in terms of the surficial, mat building community. However, information about biod...
Article
Full-text available
Vera Rubin ridge (VRR) is an erosion‐resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short‐wave infrared measurements indicate it contains red‐colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentol...
Article
Full-text available
Geochemical results are presented from Curiosity’s exploration of Vera Rubin ridge (VRR), in addition to the full chemostratigraphy of the predominantly lacustrine mudstone Murray formation up to and including VRR. VRR is a prominent ridge flanking Aeolis Mons (informally Mt. Sharp), the central mound in Gale crater, Mars, and was a key area of int...
Article
Significance Animals that build skeletons have an outsized impact on Earth’s biological, geochemical, and sedimentological cycles. To determine when, where, and why metazoan biomineralization first emerged, it is necessary to study the earliest record of skeletal animals. This record is made up of four genera from the Ediacaran period: Namacalathus...
Article
Full-text available
The Curiosity rover's exploration of rocks and soils in Gale crater has provided diverse geochemical and mineralogical data sets, underscoring the complex geological history of the region. We report the crystalline, clay mineral, and amorphous phase distributions of four Gale crater rocks from an 80‐m stratigraphic interval. The mineralogy of the f...
Article
Full-text available
Ground‐based bedding orientation measurements are critical to determine the geologic history and processes of sedimentation in Gale crater, Mars. We constrain the dip of lacustrine strata of the Blunts Point, Pettegrove Point, and Jura members of the Murray formation using a combination of regional stratigraphic correlations and bed attitude measur...
Article
Full-text available
Genome-resolved metagenomic sequencing approaches have led to a substantial increase in the recognized diversity of microorganisms; this included the discovery of novel metabolic pathways in previously recognized clades, and has enabled a more accurate determination of the extant distribution of key metabolisms and how they evolved over Earth histo...
Preprint
Full-text available
Genome-resolved metagenomic sequencing approaches have led to a substantial increase in the recognized diversity of microorganisms; this included the discovery of novel metabolic pathways in previously recognized clades, and has enabled a more accurate determination of the extant distribution of key metabolisms and how they evolved over Earth histo...
Conference Paper
Full-text available
Lithostratigraphic correlation represents a fundamental tool for interpreting the depositional history and stratal architecture in sedimentary rock successions. On Earth, this is accomplished by measuring the thickness and lithologies through a stratigraphic unit at multiple places along and across strike, then linking similar rock types. Across ki...