John M. Burns’s research while affiliated with Smithsonian Institution and other places
What is this page?
This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.
Multi-locus genetic data for phylogeographic studies is generally limited in geographic and taxonomic scope as most studies only examine a few related species. The strong adoption of DNA barcoding has generated large datasets of mtDNA COI sequences. This work examines the butterfly fauna of Canada and United States based on 13,236 COI barcode records derived from 619 species. It compiles i) geographic maps depicting the spatial distribution of haplotypes, ii) haplotype networks (minimum spanning trees), and iii) standard indices of genetic diversity such as nucleotide diversity (π), haplotype richness (H), and a measure of spatial genetic structure (GST). High intraspecific genetic diversity and marked spatial structure were observed in the northwestern and southern North America, as well as in proximity to mountain chains. While species generally displayed concordance between genetic diversity and spatial structure, some revealed incongruence between these two metrics. Interestingly, most species falling in this category shared their barcode sequences with one at least other species. Aside from revealing large-scale phylogeographic patterns and shedding light on the processes underlying these patterns, this work also exposed cases of potential synonymy and hybridization.
Introduction:
Species of Mesochorus are found worldwide and members of this genus are primarily hyperparasitoids of Ichneumonoidea and Tachinidae.
Objectives:
To describe species of Costa Rican Mesochorus reared from caterpillars and to a lesser extent Malaise-trapped.
Methods:
The species are diagnosed by COI mtDNA barcodes, morphological inspection, and host data. A suite of images and host data (plant, caterpillar, and primary parasitoid) are provided for each species.
Results:
A total of 158 new species of Mesochorus. Sharkey is the taxonomic authority for all.
Conclusions:
This demonstrates a practical application of DNA barcoding that can be applied to the masses of undescribed neotropical insect species in hyperdiverse groups.
The parasitoid wasp genus Alphomelon Mason, 1981 is revised, based on a combination of basic morphology (dichotomous key and brief diagnostic descriptions), DNA barcoding, biology (host data and wasp cocoons), and distribution data. A total of 49 species is considered; the genus is almost entirely Neotropical (48 species recorded from that region), but three species reach the Nearctic, with one of them extending as far north as 45° N in Canada. Alphomelon parasitizes exclusively Hesperiinae caterpillars (Lepidoptera: Hesperiidae), mostly feeding on monocots in the families Arecaceae, Bromeliaceae, Cannaceae, Commelinaceae, Heliconiaceae, and Poaceae. Most wasp species parasitize either on one or very few (2–4) host species, usually within one or two hesperiine genera; but some species can parasitize several hosts from up to nine different hesperiine genera. Among species with available data for their cocoons, roughly half weave solitary cocoons (16) and half are gregarious (17); cocoons tend to be surrounded by a rather distinctive, coarse silk (especially in solitary species, but also distinguishable in some gregarious species). Neither morphology nor DNA barcoding alone was sufficient on its own to delimit all species properly; by integrating all available evidence (even if incomplete, as available data for every species is different) a foundation is provided for future studies incorporating more specimens, especially from South America. The following 30 new species are described: cruzi , itatiaiensis , and palomae , authored by Shimbori & Fernandez-Triana; and adrianguadamuzi , amazonas , andydeansi , calixtomoragai , carolinacanoae , christerhanssoni , diniamartinezae , duvalierbricenoi , eldaarayae , eliethcantillanoae , gloriasihezarae , guillermopereirai , hazelcambroneroae , josecortesi , keineraragoni , luciarosae , manuelriosi , mikesharkeyi , osvaldoespinozai , paramelanoscelis , paranigriceps , petronariosae , ricardocaleroi , rigoi , rostermoragai , sergioriosi , and yanayacu , authored by Fernandez-Triana & Shimbori.
Ridens is a genus of about 20 described species of neotropical skipper butterflies to which we add Ridens conservationinternationalis Burns and Grishin, new species. We describe it from wild-caught caterpillars, what they eat, pupae, reared adults, genitalia, nuclear and mitochondrial genomes, and the Z chromosome. The type-series of this skipper comes from mid-elevation (510–980 m) rain forest on the Caribbean slope of the Cordillera Guanacaste in northwestern Costa Rica. (One male has been taken in Darien in eastern Panama.) To date, caterpillars have been found on just three species in two genera (Persea and Beilschmiedia) of Lauraceae. The head of immature stages is unusual with respect to larval color pattern and pupal morphology. Adult facies differs from those of congeners, and male genitalia differ sharply from those of the other species of Ridens reared in Area de Conservation Guanacaste (ACG). Three phylogenetic trees based on genomic data show that R. conservationinternationalis is well-removed from described species of Ridens but close to a similar-looking male of an undescribed species from Peru. (Tangentially, we undo the polytypic status of R. crison by reinstating R. cachinnans as a species instead of subspecies and newly raising R. howarthi from subspecies to species.)
We present an analysis of the names proposed by Carl Plötz in 1884 for the New World species in the genus Pyrgus Hübner, [1819] facilitated by the genomic sequencing of extant primary type specimens comparatively with a larger sample of more recently collected specimens of these species and their relatives. The changes to nomenclature suggested here are only caused by the identity of primary type specimens as revealed by their phenotypes or through genomic sequencing. All neotypes are designated to stabilize nomenclature in agreement with the current usage of these names, which in unison agrees best with the information available about them. Lectotypes are designated for the following 5 taxa: Pyrgus (Scelothrix [sic]) bellatrix Plötz, 1884 (type locality Argentina: Buenos Aires), Pyrgus (Pyrgus) willi Plötz, 1884 (type locality in Brazil: Minas Gerais), Pyrgus (Pyrgus) albescens Plötz, 1884 (type locality in Mexico), Pyrgus (Syrichthus [sic]) lycurgus Plötz, 1884 (type locality in "Central America", likely southern Mexico), and Pyrgus occidentalis Skinner, 1906 (type locality USA: Texas, San Antonio). Neotypes are designated for the following 4 taxa: Pyrgus (Pyrgus) adepta Plötz, 1884 (Herrich-Schäffer in litt.) (type locality Colombia: Bogota), Pyrgus (Scelothrix [sic]) dion Plötz, 1884 (type locality Colombia: Bogota), Pyrgus (Scelothrix [sic]) adjutrix Plötz, 1884 (Herrich-Schäffer in litt.) (type locality in Mexico: Nuevo Leon), Pyrgus (Pyrgus) insolatrix Plötz, 1884 (Herrich-Schäffer in litt.) (type locality in "Central America", likely southern Mexico). As a result, P. lycurgus and P. insolatrix are objective synonyms. The following are junior subjective synonyms: P. dion of Burnsius adepta (Plötz, 1884), Pyrgus (Syrichthus [sic]) varus Plötz, 1884 of Burnsius orcus (Stoll, 1780) and P. adjutrix of Burnsius oileus (Linnaeus, 1767). Heliopetes (Heliopyrgus) willi (Plötz, 1884) is a species-level taxon and not a subspecies of Heliopetes (Heliopyrgus) domicella (Erichson, [1849])). Genomic analysis of the lectotypes of P. albescens, P. lycurgus, and P. occidentalis establishes them as conspecific with Burnsius communis (Grote, 1872), thus depriving a distinct species currently identified as Burnsius albescens from its name, that becomes a name for Burnsius communis albescens (Plötz, 1884) in accord with its lectotype identity; P. lycurgus and P. insolatrix are its junior subjective synonyms, but P. occidentalis is a junior subjective synonym of B. communis communis. A new name Burnsius albezens Grishin sp. n. (type locality USA: Arizona, Cochise Co., Portal) is proposed for the species misidentified as B. albescens. Furthermore, genomic comparisons reveal two other new species and one new subspecies of Burnsius Grishin, 2019: B. burnsi Grishin sp. n. (type locality Mexico: Veracruz, Huatusco), B. adepta inepta Grishin ssp. n. (type locality Ecuador: Pichincha, Tandapi), and B. orcynus Grishin sp. n. (type locality Curaçao: Hato Field) that are cryptic and can be confidently identified only by their genotype.
Although the butterflies of North America have received considerable taxonomic attention, overlooked species and instances of hybridization continue to be revealed. The present study assembles a DNA barcode reference library for this fauna to identify groups whose patterns of sequence variation suggest the need for further taxonomic study. Based on 14,626 records from 814 species, DNA barcodes were obtained for 96% of the fauna. The maximum intraspecific distance averaged 1/4 the minimum distance to the nearest neighbor, producing a barcode gap in 76% of the species. Most species (80%) were monophyletic, the others were para- or polyphyletic. Although 15% of currently recognized species shared barcodes, the incidence of such taxa was far higher in regions exposed to Pleistocene glaciations than in those that were ice-free. Nearly 10% of species displayed high intraspecific variation (>2.5%), suggesting the need for further investigation to assess potential cryptic diversity. Aside from aiding the identification of all life stages of North American butterflies, the reference library has provided new perspectives on the incidence of both cryptic and potentially over-split species, setting the stage for future studies that can further explore the evolutionary dynamics of this group.
Three new genera are described: Michener (Proteropinae), Bioalfa (Rogadinae), and Hermosomastax (Rogadinae). Keys are given for the New World genera of the following braconid subfamilies: Agathidinae, Braconinae, Cheloninae, Homolobinae, Hormiinae, Ichneutinae, Macrocentrinae, Orgilinae, Proteropinae, Rhysipolinae, and Rogadinae. In these subfamilies 416 species are described or redescribed. Most of the species have been reared and all but 13 are new to science. A consensus sequence of the COI barcodes possessed by each species is employed to diagnose the species, and this approach is justified in the introduction. Most descriptions consist of a lateral or dorsal image of the holotype, a diagnostic COI consensus barcode, the Barcode Index Number (BIN) code with a link to the Barcode of Life Database (BOLD), and the holotype specimen information required by the International Code of Zoological Nomenclature. The following species are treated and those lacking authorship are newly described here with authorship attributable to Sharkey except for the new species of Macrocentrinae which are by Sharkey & van Achterberg: AGATHIDINAE: Aerophilus paulmarshi , Mesocoelus davidsmithi , Neothlipsis bobkulai , Plesiocoelus vanachterbergi , Pneumagathis erythrogastra (Cameron, 1905), Therophilus bobwhartoni , T. donaldquickei , T. gracewoodae , T. maetoi , T. montywoodi , T. penteadodiasae , Zacremnops brianbrowni , Z. coatlicue Sharkey, 1990, Zacremnops cressoni (Cameron, 1887), Z. ekchuah Sharkey, 1990, Z. josefernandezi , Zelomorpha sarahmeierottoae . BRACONINAE: Bracon alejandromarini , B. alejandromasisi , B. alexamasisae , B. andresmarini , B. andrewwalshi , B. anniapicadoae , B. anniemoriceae , B. barryhammeli , B. bernardoespinozai , B. carlossanabriai , B. chanchini , B. christophervallei , B. erasmocoronadoi , B. eugeniephillipsae , B. federicomatarritai , B. frankjoycei , B. gerardovegai , B. germanvegai , B. isidrochaconi , B. jimlewisi , B. josejaramilloi , B. juanjoseoviedoi , B. juliodiazi , B. luzmariaromeroae , B. manuelzumbadoi , B. marialuisariasae , B. mariamartachavarriae , B. mariorivasi , B. melissaespinozae , B. nelsonzamorai , B. nicklaphami , B. ninamasisae , B. oliverwalshi , B. paulamarinae , B. rafamoralesi , B. robertofernandezi , B. rogerblancoi , B. ronaldzunigai , B. sigifredomarini , B. tihisiaboshartae , B. wilberthbrizuelai , Digonogastra montylloydi , D. montywoodi , D. motohasegawai , D. natwheelwrighti , D. nickgrishini . CHELONINAE: Adelius adrianguadamuzi , A. gauldi Shimbori & Shaw, 2019, A. janzeni Shimbori & Shaw, 2019, Ascogaster gloriasihezarae , A. grettelvegae , A. guillermopereirai , A. gustavoecheverrii , A. katyvandusenae , A. luisdiegogomezi , Chelonus alejandrozaldivari , C. gustavogutierrezi , C. gustavoinduni , C. harryramirezi , C. hartmanguidoi , C. hazelcambroneroae , C. iangauldi , C. isidrochaconi , C. janecheverriae , C. jeffmilleri , C. jennyphillipsae , C. jeremydewaardi , C. jessiehillae , C. jesusugaldei , C. jimlewisi , C. jimmilleri , C. jimwhitfieldi , C. johanvalerioi , C. johnburnsi , C. johnnoyesi , C. jorgebaltodanoi , C. jorgehernandezi , C. josealfredohernandezi , C. josefernandeztrianai , C. josehernandezcortesi , C. josemanuelperezi , C. josephinerodriguezae , C. juanmatai , C. junkoshimurae , C. kateperezae , C. luciariosae , C. luzmariaromeroae , C. manuelpereirai , C. manuelzumbadoi , C. marianopereirai , C. maribellealvarezae , C. markmetzi , C. markshawi , C. martajimenezae , C. mayrabonillae , C. meganmiltonae , C. melaniamunozae , C. michaelstroudi , C. michellevanderbankae , C. mingfangi , C. minorcarmonai , C. monikaspringerae , C. moniquegilbertae , C. motohasegawai , C. nataliaivanovae , C. nelsonzamorai , C. normwoodleyi , C. osvaldoespinozai , C. pamelacastilloae , C. paulgoldsteini , C. paulhansoni , C. paulheberti , C. petronariosae , C. ramyamanjunathae , C. randallgarciai , C. rebeccakittelae , C. robertoespinozai , C. robertofernandezi , C. rocioecheverriae , C. rodrigogamezi , C. ronaldzunigai , C. rosibelelizondoae , C. rostermoragai , C. ruthfrancoae , C. scottmilleri , C. scottshawi , C. sergioriosi , C. sigifredomarini , C. stevearonsoni , C. stevestroudi , C. sujeevanratnasinghami , C. sureshnaiki , C. torbjornekremi , C. yeimycedenoae , Leptodrepana alexisae , L. erasmocoronadoi , L. felipechavarriai , L. freddyquesadai , L. gilbertfuentesi , L. manuelriosi , Phanerotoma almasolisae , P. alvaroherrerai , P. anacordobae , P. anamariamongeae , P. andydeansi , P. angelagonzalezae , P. angelsolisi , P. barryhammeli , P. bernardoespinozai , P. calixtomoragai , P. carolinacanoae , P. christerhanssoni , P. christhompsoni , P. davesmithi , P. davidduthiei , P. dirksteinkei , P. donquickei , P. duniagarciae , P. duvalierbricenoi , P. eddysanchezi , P. eldarayae , P. eliethcantillanoae , P. jenopappi , Pseudophanerotoma alanflemingi , Ps. albanjimenezi , Ps. alejandromarini , Ps. alexsmithi , Ps. allisonbrownae , Ps. bobrobbinsi . HOMOLOBINAE: Exasticolus jennyphillipsae , E. randallgarciai , E. robertofernandezi , E. sigifredomarini , E. tomlewinsoni . HORMIINAE: Hormius anamariamongeae , H. angelsolisi , H. anniapicadoae , H. arthurchapmani , H. barryhammeli , H. carmenretanae , H. carloswalkeri , H. cesarsuarezi , H. danbrooksi , H. eddysanchezi , H. erikframstadi , H. georgedavisi , H. grettelvegae , H. gustavoinduni , H. hartmanguidoi , H. hectoraritai , H. hesiquiobenitezi , H. irenecanasae , H. isidrochaconi, H. jaygallegosi , H. jimbeachi , H. jimlewisi , H. joelcracrafti , H. johanvalerioi , H. johnburleyi , H. joncoddingtoni , H. jorgecarvajali , H. juanmatai , H. manuelzumbadoi , H. mercedesfosterae , H. modonnellyae , H. nelsonzamorai , H. pamelacastilloae , H. raycypessi , H. ritacolwellae , H. robcolwelli , H. rogerblancosegurai , H. ronaldzunigai , H. russchapmani , H. virginiaferrisae , H. warrenbrighami , H. willsflowersi . ICHNEUTINAE: Oligoneurus kriskrishtalkai , O. jorgejimenezi , Paroligoneurus elainehoaglandae , P. julianhumphriesi , P. mikeiviei . MACROCENTRINAE: Austrozele jorgecampabadali , A. jorgesoberoni , Dolichozele gravitarsis (Muesebeck, 1938), D. josefernandeztrianai , D. josephinerodriguezae , Hymenochaonia kalevikulli , H. kateperezae , H. katherinebaillieae , H. katherineellisonae , H. katyvandusenae , H. kazumifukunagae , H. keithlangdoni , H. keithwillmotti , H. kenjinishidai , H. kimberleysheldonae , H. krisnorvigae , H. lilianamadrigalae , H. lizlangleyae , Macrocentrus fredsingeri , M. geoffbarnardi , M. gregburtoni , M. gretchendailyae , M. grettelvegae , M. gustavogutierrezi , M. hannahjamesae , M. harisridhari , M. hillaryrosnerae , M. hiroshikidonoi , M. iangauldi , M. jennyphillipsae , M. jesseausubeli , M. jessemaysharkae , M. jimwhitfieldi , M. johnbrowni , M. johnburnsi , M. jonathanfranzeni , M. jonathanrosenbergi , M. jorgebaltodanoi , M. lucianocapelli . ORGILINAE: Orgilus amyrossmanae , O. carrolyoonae , O. christhompsoni , O. christinemcmahonae , O. dianalipscombae , O. ebbenielsoni , O. elizabethpennisiae , O. evertlindquisti , O. genestoermeri , O. jamesriegeri , O. jeanmillerae , O. jeffmilleri , O. jerrypowelli , O. jimtiedjei , O. johnlundbergi , O. johnpipolyi , O. jorgellorentei , O. larryspearsi , O. marlinricei , O. mellissaespinozae , O. mikesmithi , O. normplatnicki , O. peterrauchi , O. richardprimacki , O. sandraberriosae , O. sarahmirandae , O. scottmilleri , O. scottmorii , Stantonia billalleni , S. brookejarvisae , S. donwilsoni , S. erikabjorstromae , S. garywolfi , S. henrikekmani , S. luismirandai , S. miriamzunzae , S. quentinwheeleri , S. robinkazmierae , S. ruthtifferae . PROTEROPINAE: Hebichneutes tricolor Sharkey & Wharton, 1994, Proterops iangauldi , P. vickifunkae , Michener charlesi . RHYSIPOLINAE: Pseudorhysipolis luisfonsecai , P. mailyngonzalezaeRhysipolis julioquirosi . ROGADINAE: Aleiodes adrianaradulovae , A. adrianforsythi , A. agnespeelleae , A. alaneaglei , A. alanflemingi , A. alanhalevii , A. alejandromasisi , A. alessandracallejae , A. alexsmithi , A. alfonsopescadori , A. alisundermieri , A. almasolisae , A. alvarougaldei , A. alvaroumanai , A. angelsolisi , A. annhowdenae , A. bobandersoni , A. carolinagodoyae , A. charlieobrieni , A. davefurthi , A. donwhiteheadi , A. doylemckeyi , A. frankhovorei , A. henryhowdeni , A. inga Shimbori & Shaw, 2020, A. johnchemsaki , A. johnkingsolveri , A. gonodontovorus Shimbori & Shaw, 2020, A. manuelzumbadoi , A. mayrabonillae , A. michelledsouzae , A. mikeiviei , A. normwoodleyi , A. pammitchellae , A. pauljohnsoni , A. rosewarnerae , A. steveashei , A. terryerwini , A. willsflowersi , Bioalfa pedroleoni , B. alvarougaldei , B. rodrigogamezi , Choreborogas andydeansi , C. eladiocastroi , C. felipechavarriai , C. frankjoycei , Clinocentrus andywarreni , Cl. angelsolisi , Cystomastax alexhausmanni , Cy. angelagonzalezae , Cy. ayaigarashiae , Hermosomastax clavifemorus Quicke sp. nov., Heterogamus donstonei , Pseudoyelicones bernsweeneyi , Stiropius bencrairi , S. berndkerni , S. edgargutierrezi , S. edwilsoni , S. ehakernae , Triraphis billfreelandi , T. billmclarneyi , T. billripplei , T. bobandersoni , T. bobrobbinsi , T. bradzlotnicki , T. brianbrowni , T. brianlaueri , T. briannestjacquesae , T. camilocamargoi , T. carlosherrerai , T. carolinepalmerae , T. charlesmorrisi , T. chigiybinellae , T. christerhanssoni , T. christhompsoni , T. conniebarlowae , T. craigsimonsi , T. defectus Valerio, 2015, T. danielhubi , T. davidduthiei , T. davidwahli , T. federicomatarritai , T. ferrisjabri , T. mariobozai , T. martindohrni , T. matssegnestami , T. mehrdadhajibabaei , T. ollieflinti , T. tildalauerae , Yelicones dirksteinkei , Y. markmetzi , Y. monserrathvargasae , Y. tricolor Quicke, 1996. Y. woldai Quicke, 1996.
The following new combinations are proposed: Neothlipsis smithi (Ashmead), new combination for Microdus smithi Ashmead, 1894; Neothlipsis pygmaeus (Enderlein), new combination for Microdus pygmaeus Enderlein, 1920; Neothlipsis unicinctus (Ashmead), new combination for Microdus unicinctus Ashmead, 1894; Therophilus anomalus (Bortoni and Penteado-Dias) new combination for Plesiocoelus anomalus Bortoni and Penteado-Dias, 2015; Aerophilus areolatus (Bortoni and Penteado-Dias) new combination for Plesiocoelus areolatus Bortoni and Penteado-Dias, 2015; Pneumagathis erythrogastra (Cameron) new combination for Agathis erythrogastra Cameron, 1905. Dolichozele citreitarsis (Enderlein), new combination for Paniscozele citreitarsis Enderlein, 1920. Dolichozele fuscivertex (Enderlein) new combination for Paniscozele fuscivertex Enderlein, 1920. Finally, Bassus brooksi Sharkey, 1998 is synonymized with Agathis erythrogastra Cameron, 1905; Paniscozele griseipes Enderlein, 1920 is synonymized with Dolichozele koebelei Viereck, 1911; Paniscozele carinifrons Enderlein, 1920 is synonymized with Dolichozele fuscivertex (Enderlein, 1920); and Paniscozele nigricauda Enderlein,1920 is synonymized with Dolichozele quaestor (Fabricius, 1804). (originally described as Ophion quaestor Fabricius, 1804).
A cloud forest skipper butterfly, known from Costa Rica and Panama, was described in 1888 and has been in three polytypic genera. Diverse characters, especially male genitalia and phylogeny based on the Z sex chromosome, but also adult and larval facies and larval foodplants, argue for placement of this species in a monotypic genus. The result: Neomorphuncus Burns, new genus and Neomorphuncus eugramma (Mabille), new combination.
Citations (27)
... In this paper, we analyse parasitoid-host, host-food plant, and tritrophic food webs. Barcode Index Numbers (BINs) are used as a proxy for the parasitoid species [20], since their taxonomy is so poorly known, with a large majority of the species in the ACG being undescribed [11,30,[47][48][49][50]. ...
... According to historical references (compiled in [18]), the ratio of solitary to gregarious parasitism within the subfamily Microgastrinae appears to be approximately equal, at least in some genera, where relatively comprehensive data are available (e.g., [19,20]). ...
... Here, we report further findings that are encountered as whole genomic shotgun datasets for additional specimens are being assembled and comparatively analyzed. We place emphasis on the sequencing of primary type specimens that provide objective references for the names (Zhang et al. 2022a). When type localities are unknown, we deduce them by genomic comparison of the type specimens with specimens from known localities . ...
... Furthermore, the allopatric populations of these species on both continents tend to show strong intracontinental substructuring. For the sake of simplicity, we assumed uniformity of the North American population, which may not in all cases be a reflection of the true scenario (D'Ercole et al. 2021, Campbell et al. 2022. Confirmation for this comes from our results, especially the barcodes, which in Holarctic species showed larger variations in within-population divergences. ...
... Micro approaches focus on uncovering species new to Western scientific knowledge, with the largest proportion of literature focused on cryptic species (Figure 1b and Supplementary Figure S6) and on the discussion of novel methods used to find them. Some authors discuss microscale studies within the wider context of conservation biology (Sales et al. 2018;Milić et al. 2019;Kortmann et al. 2022), but a considerable proportion do not make explicit links to applied conservation and focus, instead, on the fundamental discovery of new taxa only (Grabowski et al. 2017;Morinière et al. 2019;Sharkey et al. 2021). ...
... During the course of this effort, they set up the largest caterpillar rearing programme ever to investigate tropical biodiversity and the interactions among Lepidoptera, their parasitoids, hyperparasitoids, and their food plants. The magnitude of the task is put into perspective as it is estimated that, living in the ACG, there are approximately 15,000 species of butterflies and moths [5,6]. The project relies on a large team of parataxonomists who are local residents, largely trained on-the-job to carry out fieldwork, rearings, record-keeping, and identifications of caterpillars, food plants, and hosts [7][8][9][10]. ...
... In certain scales, the anatomy of each part was typical, but the scale's orientation changed the optical effects. Carystoides escalantei's scales had typical anatomy but stood vertically, perpendicular to the wing membrane, with both the microribs and crossribs suggested to cause incoherent scattering (Ge et al., 2017). In Pierella luna, the apical tip of each scale curled over, making the crossribs form a vertical grating (Vigneron et al., 2010;England et al., 2014). ...
... Due to a shared shelter-inhabiting behavior, the immature stadia of Troyus phyllides and Thoon ponka generally appear similar to other skippers which have smooth, uniformly colored bodies, lacking projections and head scoli (see Bächtold et al. 2017;Greeney & Warren 2009a;Greeney & Warren 2009b). These tubular bodies and smooth heads are well adapted for entering and exiting the shelter structures that these caterpillars make, and perhaps most pronounced in members of the skipper tribe Megathymini, where the caterpillars have small heads due to their unique early stage biology of living inside succulents as root borers (Freeman 1969). ...
... Dispersal is probably best documented in butterflies over all other insect groups (Stevens, Turlure, & Baguette, 2010) with dispersal characteristics being widely used in guiding landscape management and conservation for temperate butterflies (Burns, 2015;Leidner & Haddad, 2011;Schultz & Crone, 2008). This three-stage process includes emigration (crossing habitat boundaries), transience (traversing through a landscape; potentially non-habitat) and immigration (settlement) (Van Dyck & Baguette, 2005). ...
... The last catalogue of staphylinid biodiversity reported two species of Anotylus in Costa Rica [58], Anotylus insignitus Gravenhorst, 1806 which is an invasive species, and Anotylus nitescens Bernhauer, 1942 a species apparently endemic to Costa Rica (Vera Blanca [60]. The former possesses a large distribution throughout the Americas and several Atlantic and Pacific islands [57]; however, like many older species' descriptions, this taxon may be made up of several discreet species with smaller distributions [61]. A. nitescens has not appeared in the literature since its original species description [62]. ...