Johannes Kisch’s research while affiliated with Technische Universität Berlin and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (4)


Side-specific operant conditioning of antennal movements in the honey bee
  • Article

August 2008

·

25 Reads

·

6 Citations

Behavioural Brain Research

Johannes Kisch

·

Operant conditioning of antennal movements in honey bees was used to investigate whether learned changes on one antenna influence antennal movements of the contralateral antenna. Conditioning of the right antenna did not alter antennal movements of the left antenna and subsequent conditioning of the left antenna did not abolish the previously learned change in the right antenna. Thus, the antennal systems on each side are largely independent from each other.


Verhaltens- und elektrophysiologische Untersuchungen zur operanten Konditionierung von Antennenbewegungen der Honigbiene

January 2001

·

74 Reads

·

1 Citation

Honigbienen werden im Freiland operant konditioniert, wenn ein spezifisches Verhalten Belohnung erfährt, z.B. das erfolgreiche Aufsuchen einer Futterquelle oder die Heimkehr zum Stock. Ziel der vorliegenden Arbeit war es, ein operantes Lernparadigma für Bienen unter Laborbedingungen zu entwickeln und auf seine Charakteristika zu untersuchen. Bienen können unter Laborbedingungen lernen, kleine Plättchen vermehrt mit ihren Antennen abzutasten, wenn die häufige Berührung belohnt wird. Sie lernen in einer differentiellen Lernsituation belohnte Plättchen von unbelohnten Plättchen zu unterscheiden und tasten das konditionierte Plättchen häufiger ab. Die Plastizität des operanten Lernens konnte durch Umlernversuche zwischen dorsaler und ventraler Platte demonstriert werden. Die Akquisition operanten Lernens erreicht schneller ihre Sättigung als beim unbelohnten motorischen Lernen und langsamer als beim taktilen oder olfaktorischen Konditionieren von Bienen. Durch seitenspezifische Konditionierung von Antennenbewegungen konnte gezeigt werden, dass operantes Lernen spezifisch für die konditionierte Antenne ist. Die Hypothese, dass operantes Lernen von Antennenbewegungen auf den Dorsallobus begrenzt ist, bleibt bestehen. Operantes Konditionieren lässt sich an einem im Abtasten sehr dominanten Antennenmuskel (fast flagellum flexor) zeigen, der von einem einzelnen identifizierten Motoneuron innerviert wird. Der Effekt der Konditionierung liegt in einer Erhöhung der Häufigkeit von Aktionspotentialen. Mögliche Ursachen der erhöhten Feuerrate des Motoneurons durch die Konditionierung werden diskutiert. Die Fixierung der antennalen Gelenke reduziert oder verhindert operantes Lernen im elektrophysiologischen Präparat. Daraus ergaben sich Ausschaltexperimente, die eine weitere Eingrenzung der mechanosensorischen Rückkopplung auf das operante Lernen ermöglichten. Die Sinneshaarfelder am Kugelgelenk der Antenne haben keinen signifikanten Einfluss auf das operante Positionslernen. Bienen, die sich im Lernerfolg nach taktiler Oberflächenkonditionierung unterschieden, zeigten schon vorher Unterschiede in der Abtastaktivität. Mögliche Zusammenhänge von Abtastaktivität eines Tieres und der Modulation durch biogene Amine werden erläutert. Abtastverhalten und Antworteigenschaften auf Zuckerwasserreize wurden untersucht. Bienen, die schon auf einen Wasserstimulus mit einem Rüsselreflex reagierten, zeigten über kurze Zeit eine höhere ventrale Abtastaktivität als Bienen, die erst auf Zuckerwasser reagierten. Erklärungsansätze zur unterschiedlichen Abtastaktivität von Bienen mit verschiedenen „Reaktionsschwellen“ werden gesucht.


Fig. 1A, B Scheme of the set-up for measuring and conditioning the muscle potentials in the scape and conditioning procedure. A Apparatus for operant conditioning of the fast ¯agellum ¯exor muscle potentials. The muscle potentials were ampli®ed using a highgain d.c. ampli®er (A). The signals of the fast ¯agellum ¯exor muscle were ®ltered by a window-discriminator (WD) and evaluated using a PC. The computer also provided the signal for the reward. The recordings were stored using a DAT recorder (DAT) and visualized with an oscilloscope (OSC). The inset shows a scheme of the scapus with the inserted electrode and a typical recording. The muscle potentials of the fast ¯agellum ¯exor muscle are the large spikes in the recording. B Procedure for conditioning the activity of the fast ¯agellum ¯exor. In the pretest, the spontaneous frequency of muscle potentials was measured over 10 min. The mean spontaneous activity/ 10 s of the fast ¯agellum ¯exor muscle and the corresponding standard deviation were calculated x pre AE s pre À Á and served as a
Fig. 2 Three-dimensional drawing of the scapus. The joint between the scapus and the head capsule is indicated at the right side, the ®rst segment of the  ̄agellum is indicated at the left side 
Fig. 6 Mean relative frequency distributions of bins containing a de®ned number of potentials in A conditioning and B yoke control groups before and after ten conditioning trials. The ordinates show the mean relative frequency standard deviation of bins. The abscissae show the bins which contain between 0 and 3 9 spikes/200 ms. In the conditioning group seven animals were tested, in the yoke control group eight animals. Signi®cant dierences between pre- and posttest for individual bins are indicated (* P < 0.05; ** P < 0.01; 2-sided t -test) 
Operant conditioning of antennal muscle activity in the honey bee (Apis mellifera L.)
  • Article
  • Full-text available

July 2000

·

340 Reads

·

36 Citations

Journal of Comparative Physiology A

Antennal movements of the honey bee can be conditioned operantly under laboratory conditions. Using this behavioural paradigm we have developed a preparation in which the activity of a single antennal muscle has been operantly conditioned. This muscle, the fast flagellum flexor muscle, is innervated by an identified motoneuron whose action potentials correlate 1:1 with the muscle potentials. The activity of the fast flagellum flexor muscle was recorded extracellularly from the scapus of the antenna. The animal was rewarded with a drop of sucrose solution whenever the muscle activity exceeded a defined reward threshold. The reward threshold was one standard deviation above the mean spontaneous frequency prior to conditioning. After ten conditioning trials, the frequency of the muscle potentials had increased significantly compared to the spontaneous frequency. The conditioned changes of frequency were observed for 30 min after conditioning. No significant changes of the frequency were found in the yoke control group. The firing pattern of the muscle potentials did not change significantly after conditioning or feeding. Fixing the antennal joints reduces or abolishes associative operant conditioning. The conditioned changes of the frequency of muscle potentials in the freely moving antenna are directly comparable to the behavioural changes during operant conditioning.

Download

Operant conditioning of antennal movements in the honey bee

March 1999

·

35 Reads

·

50 Citations

Behavioural Brain Research

An operant learning protocol was developed for honeybees that are fixed in small tubes. The bees had to touch one or two small silver plates within the range of one antenna. The contacts of the antenna with the silver plates were registered electronically. Three conditioning protocols were analysed. In the first series the conditioned increase of the contact frequency was tested. The animals could touch one plate and received a reward (a small drop of sucrose) whenever the instantaneous frequency at this plate was more than one or two standard deviations above the spontaneous frequency. After conditioning the bees showed a significant increase of the contact frequency. No significant changes were found in a group of yoked controls. In the second series differential conditioning was tested. The animals could touch two silver plates. The spontaneous behaviour was measured and the animals received the reward upon touching the plate with the lower spontaneous frequency. The rewards were only applied whenever the instantaneous frequency exceeded a defined threshold. After ten conditioning trials the animals showed a significant increase in contact frequency for the conditioned plate compared to spontaneous behaviour. No significant changes were found in a group of yoked controls. In the third series reversal learning was tested. The animals were able to touch two silver plates. They were first conditioned to touch the plate which had the lower spontaneous contact frequency. After these conditioning trials they were tested for 10 min and subsequently conditioned to the alternative plate. The experiments demonstrated significant reversal learning compared to yoked controls. This new operant conditioning paradigm for the bee offers the possibility to analyse at the physiological level the mechanisms underlying different forms of learning in this insect.

Citations (4)


... Nach Kisch (2001) hat die Ablation propriorezeptiver Haare der Borstenfelder am Gelenk zwischen Scapus und Kopfkapsel zwar eine Erniedrigung der Abtastaktivität zur Folge, beeinflußt jedoch nicht den Erfolg des antennalen Positionslernens. Maronde und Erber (unveröffentlicht) stellten fest, daß eine Ablation propriorezeptiver Haarfelder die Koordination der Antennenbewegung und die Reaktion auf gustatorische und mechanische Stimuli stark beeinträchtigt. ...

Reference:

Das gustatorische System und antennales Lernen in der Honigbiene (Apis mellifera L.) vorgelegt von
Verhaltens- und elektrophysiologische Untersuchungen zur operanten Konditionierung von Antennenbewegungen der Honigbiene
  • Citing Article
  • January 2001

... As yet, it is possible to condition honeybees tactile stimuli both in flight and in a harness (Erber et al., 1998;Scheiner et al., 1999) and conditioning itself also leads to a change in antennal movement (Mujagic et al., 2012b). Also, the antennal movement itself (Kisch and Erber, 1999) and even the associated muscle activity (Erber et al., 2000) may be conditioned in an operant conditioning paradigm, and operant conditioning is side-specific (Kisch and Haupt, 2009). The latter studies show that flexion of the SP-joint is involved in antennal tactile sampling. ...

Side-specific operant conditioning of antennal movements in the honey bee
  • Citing Article
  • August 2008

Behavioural Brain Research

... Mechanosensory stimuli have been previously used for conditioning protocols, elucidating honeybees' high capacity for tactile learning in both operant [29] and PER frameworks [30,31] wherein stimuli were in the form of objects held near to or touching the antennae. Our air flux stimulus is not only an interesting alternative conceptually but also offers several advantages. ...

Operant conditioning of antennal movements in the honey bee
  • Citing Article
  • March 1999

Behavioural Brain Research

... As yet, it is possible to condition honeybees tactile stimuli both in flight and in a harness (Erber et al., 1998;Scheiner et al., 1999) and conditioning itself also leads to a change in antennal movement (Mujagic et al., 2012b). Also, the antennal movement itself (Kisch and Erber, 1999) and even the associated muscle activity (Erber et al., 2000) may be conditioned in an operant conditioning paradigm, and operant conditioning is side-specific (Kisch and Haupt, 2009). The latter studies show that flexion of the SP-joint is involved in antennal tactile sampling. ...

Operant conditioning of antennal muscle activity in the honey bee (Apis mellifera L.)

Journal of Comparative Physiology A