Jayne Belnap's research while affiliated with United States Geological Survey and other places

Publications (368)

Article
Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change wi...
Article
Full-text available
Biological soil crusts (biocrusts) cover ~12% of the global land surface. They are formed by an intimate association between soil particles, photoautotrophic and heterotrophic organisms, and they effectively stabilize the soil surface of drylands. Quantitative information on the impact of biocrusts on the global cycling and climate effects of aeoli...
Article
Full-text available
Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broadened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts...
Article
Full-text available
Significance Across many global drylands, biocrusts form a protective barrier on the soil surface and fill many critical roles in these harsh yet fragile environments. Previous short-term research suggests that climate change and invasive plant introduction can damage and alter biocrust communities, yet few long-term observations exist. Using a glo...
Article
Full-text available
Global concerns for desertification have focused on the slow recovery of extensive and expanding drylands following disturbance, which may be exacerbated by climate change. Biological soil crusts (biocrusts) are photosynthetic soil communities found in drylands worldwide, which are central to the stability and resilience of dryland ecosystems, but...
Article
Full-text available
Biological soil crusts (biocrusts) cover the soil surface of global drylands and interact with vascular plants. Biocrusts may influence the availability and nature of safe sites for plant recruitment and the susceptibility of an area to invasion by non‐native species. Therefore, to investigate the potential role of biocrusts in invasive species man...
Article
Full-text available
Dryland ecosystems are sensitive to perturbations and generally slow to recover post disturbance. The microorganisms residing in dryland soils are especially important as they contribute to soil structure and nutrient cycling. Disturbance can have particularly strong effects on dryland soil structure and function, yet the natural resistance and rec...
Article
Full-text available
Dryland ecosystems are increasing in geographic extent and contribute greatly to interannual variability in global carbon dynamics. Disentangling interactions among dominant primary producers, including plants and autotrophic microbes, can help partition their contributions to dryland C dynamics. We measured the δ13C signatures of biological soil c...
Chapter
Cyanobacteria and algae are photosynthetic organisms and thus dependent on light for growth. Because light penetrates only a few millimeters into most soils, these organisms are naturally constrained to a very thin layer close to the soil surface. Nevertheless, they can become important in soil stabilization, soil hydrology, biogeochemical cycling,...
Article
Reduced abundance of non-native Tamarix shrubs in western U.S. riparian systems following biological control by a defoliating beetle has led to concerns that replacement plant communities could be dominated by other invasive species and/or not provide some of the ecosystem services that Tamarix was providing. In previous studies, Tamarix decline fo...
Article
Full-text available
Differentiation in physiological activity is a critical component of resource partitioning in resource-limited environments. For example, it is crucial to understand how plant physiological performance varies through time for different functional groups to forecast how terrestrial ecosystems will respond to change. Here, we tracked the seasonal pro...
Article
Full-text available
The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important be...
Article
Biological soil crusts (biocrusts) are a central component of dryland ecosystems. However, they are highly vulnerable to disturbance and natural recovery may be slow. Therefore, finding ways to enhance the re‐establishment of biocrusts after disturbance has been of great interest to researchers. This paper provides a review of the laboratory cultiv...
Article
Full-text available
Quantifying temperature and moisture at the soil surface is essential for understanding how soil surface biota responds to changes in its environment. However, at the soil surface, these variables are highly dynamic and standard sensors do not explicitly measure temperature or moisture in the upper few millimeters of the soil profile. This manuscri...
Article
Full-text available
Wildfires destabilize biocrust, requiring decades for most biological constituents to regenerate, but bacteria may recover quickly and mitigate the detrimental consequences of burnt soils. To evaluate the short-term recovery of biocrust bacteria, we tracked shifts in bacterial community form and function in Cyanobacteria/lichen-dominated (shrub int...
Article
As dryland degradation continues, it is increasingly important to understand how to effectively restore biocrust communities. Potential techniques include the addition of biocrust inoculum to accelerate biocrust recovery. Enhanced erosion typical of degraded environments creates a challenge for these approaches, due to loss by wind or water and bur...
Article
Dryland ecosystems are particularly vulnerable to erosion generated by livestock grazing. Quantifying this risk across a variety of landscape settings is essential for successful adaptive management, particularly in light of a changing climate. In the Upper Colorado River Basin, there are nearly 25 000 km² of rangelands with underlying soils derive...
Article
Full-text available
Methods to reduce soil loss and associated loss of ecosystem functions due to land degradation are of particular importance in dryland ecosystems. Biocrusts are communities of cyanobacteria, lichens, and bryophytes that are vulnerable to soil disturbance, but provide vital ecosystem functions when present. Biocrusts stabilize soil, improve hydrolog...
Article
Full-text available
Dryland grasslands are vast and globally important and, as in all terrestrial ecosystems, soil microbial communities play fundamental roles in regulating dryland ecosystem function. A typical characteristic of drylands is the spatial mosaic of vascular plant cover surrounded by interspace soils, where biological soil crusts (biocrusts)—a complex co...
Article
Full-text available
1.Understanding the importance of biotic interactions in driving the distribution and abundance of species is a central goal of plant ecology. Early vascular plants likely colonized land occupied by biocrusts — photoautotrophic, surface‐dwelling soil communities comprised of cyanobacteria, bryophytes, lichens, and fungi — suggesting biotic interact...
Article
Full-text available
Drylands (arid and semiarid ecosystems) cover nearly half of Earth's terrestrial surface, but biogeochemical pools and processes in these systems remain poorly understood. Litter can account for a substantial portion of carbon and nutrient pools in these systems, with litter decomposition exerting important controls over biogeochemical cycling. Dry...
Article
Full-text available
1.Drylands play a dominant role in global carbon cycling and are particularly vulnerable to increasing temperatures, but our understanding of how dryland ecosystems will respond to climatic change remains notably poor. Considering that the area of drylands is projected to increase 11–23% by 2100, understanding the impacts of warming on the function...
Article
Full-text available
Atmospheric nitrogen and sulfur pollution increased over much of the United States during the twentieth century from fossil fuel combustion and industrial agriculture. Despite recent declines, nitrogen and sulfur deposition continue to affect many plant communities in the United States, although which species are at risk remains uncertain. We used...
Article
Full-text available
Context Exotic annual grasses are transforming native arid and semi-arid ecosystems globally by accelerating fire cycles that drive vegetation state changes. Cheatgrass (Bromus tectorum), a particularly widespread and aggressive exotic annual grass, is a key management target in national parks of the western United States due to its impacts on wild...
Article
Land degradation is a persistent ecological problem in many arid and semi‐arid systems globally (drylands hereafter). Most instances of dryland degradation include some form of soil disturbance and/or soil erosion, which can hinder vegetation establishment and reduce ecosystem productivity. To combat soil erosion, researchers have identified a need...
Article
Full-text available
Droughts in the Southwest U.S. have led to major forest and grassland die‐off events in recent decades, suggesting plant community and ecosystem shifts are imminent as native perennial grass populations are replaced by shrub‐ and invasive plant‐dominated systems. These patterns are similar to those observed in arid and semiarid systems around the g...
Article
Full-text available
Erosion by wind is one of the principal processes associated with land degradation in drylands and is a significant concern to land managers and policymakers globally. In the drylands of North America, millions of tons of soil are lost to wind erosion annually. Of the 60 million ha in the United States identified as most vulnerable to wind erosion...
Article
Full-text available
Biological soil crusts (biocrusts) are common to dryland ecosystems and can influence a broad suite of soil ecological functions including stability and surface hydrology. Due to long recovery times following disturbance, there is a clear need for rehabilitation strategies to enhance the recovery of biocrust communities. Essential to biocrust recov...
Data
Taxonomic and functional annotations of differentially abundant contigs in trampled subsurface soils. Mean counts are the average across wet and dry samples (n = 6). The number of contigs is not equal to the number shown in Figure 8D as many contigs could not be annotated.
Data
Taxonomic and functional annotations of differentially abundant contigs in below-crust soils. Mean counts are the average across wet and dry samples (n = 6). The number of contigs is not equal to the number shown in Figure 8B as many contigs could not be annotated.
Data
Taxonomic and functional annotations of differentially abundant contigs in biocrusts. Mean counts are the average across wet and dry samples (n = 6). The number of contigs is not equal to the number shown in Figure 8A as many contigs could not be annotated.
Data
Taxonomic and functional annotations of differentially abundant contigs in trampled surface soils. Mean counts are the average across wet and dry samples (n = 6). The number of contigs is not equal to the number shown in Figure 8C as many contigs could not be annotated.
Article
Full-text available
Biological soil crusts (biocrusts) are microbial communities that are a feature of arid surface soils worldwide. In drylands where precipitation is pulsed and ephemeral, the ability of biocrust microbiota to rapidly initiate metabolic activity is critical to their survival. Community gene expression was compared after a short duration (1 h) wetting...
Article
Full-text available
The Colorado Plateau is one of North America's five major deserts, encompassing 340,000 km² of the western U.S., and offering many opportunities for restoration relevant to researchers and land managers in drylands around the globe. The Colorado Plateau is comprised of vast tracts of public land managed by local, state, and federal agencies that ov...
Article
In most drylands, biological soil crusts (biocrusts), an assemblage of lichens, bryophytes, fungi, green algae, and cyanobacteria, are critical to healthy ecosystem function. However, they are extremely sensitive to disturbance and attempts to facilitate their recovery have had variable success. In this study, we applied soil amendments designed to...
Presentation
Background/Question/Methods Early season invasives transform native arid and semi-arid biological communities decreasing biodiversity while increasing likelihood of catastrophic fires. Landscape and climate influence spatiotemporal variation in the establishment and spread of invasive annuals. The aggressive invasive annual cheatgrass (Bromus tecto...
Article
Full-text available
Aims Biological soil crusts (biocrusts) are soil-surface communities in drylands, dominated by cyanobacteria, mosses, and lichens. They provide key ecosystem functions by increasing soil stability and influencing soil hydrologic, nutrient, and carbon cycles. Because of this, methods to reestablish biocrusts in damaged drylands are needed. Here we t...
Article
Full-text available
Biological soil crusts (biocrusts) are predicted to be sensitive to the increased temperature and altered precipitation associated with climate change. We assessed the effects of these factors on soil carbon dioxide (CO2) balance in biocrusted soils using a sequence of manipulations over a 9-year period. We warmed biocrusted soils by 2 and, later,...
Article
Full-text available
Besides performing multiple ecosystem services individually and collectively, biocrust constituents may also create biological networks connecting spatially and temporally distinct processes. In the fungal loop hypothesis rainfall variability allows fungi to act as conduits and reservoirs, translocating resources between soils and host plants. To e...
Article
Full-text available
Dryland wind transport of sediment can accelerate soil erosion, degrade air quality, mobilize dunes, decrease water supply, and damage infrastructure. We measured aeolian sediment horizontal mass flux (q) at 100 cm height using passive aspirated sediment traps to better understand q variability on the Colorado Plateau. Measured q ‘hot spots’ rival...
Preprint
Full-text available
Biological soil crusts (biocrusts) are microbial communities that are a feature of arid surface soils worldwide. In drylands where precipitation is pulsed and ephemeral, the ability of biocrust microbiota to rapidly initiate metabolic activity is critical to their survival. Community gene expression was compared after a short duration (1 hour) wett...
Article
We investigated how properties of soil organic matter (SOM) were altered after 10 years exposure to elevated atmospheric CO2 concentration ([CO2]) in a Mojave Desert ecosystem, using plant and microbial biomarkers. We focused on roles of Larrea tridentata, the dominant evergreen shrub which form islands of fertility, and biological soil crusts whic...
Article
Full-text available
Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use...
Article
Dryland ecosystems cover over 41% of the earth's land surface, and living within these important ecosystems are approximately 2 billion people, a large proportion of whom are subsistence agropastoralists. Improper grazing in drylands can negatively impact ecosystem productivity, soil conservation, hydrologic processes, downstream water quantity and...
Article
Full-text available
Biological soil crusts (biocrusts) are predicted to be sensitive to the increased temperature and altered precipitation associated with climate change. We assessed the effects of these factors on soil carbon dioxide (CO2) balance in biocrusted soils using a sequence of manipulations over a nine-year period. We warmed biocrusted soils by 2 and, late...
Article
Full-text available
Besides performing multiple ecosystem services individually and collectively, biocrust constituents may also create biological networks connecting spatially and temporally distinct processes. In the fungal loop hypothesis, rainfall variability allows fungi to act as conduits and reservoirs, translocating resources between soils and host plants. To...
Chapter
Full-text available
The Group on Earth Observations Biodiversity Observation Network (GEO BON) is developing a monitoring framework around a set of Essential Biodiversity Variables (EBVs) which aims at facilitating data integration, spatial scaling and contributing to the filling of gaps. Here we build on this framework to explore the monitoring of EBV classes at the...
Article
Full-text available
Human-driven global change is causing ongoing declines in biodiversity worldwide. In order to address these declines, decision-makers need accurate assessments of the status of and pressures on biodiversity. However, these are heavily constrained by incomplete and uneven spatial, temporal and taxonomic coverage. For instance, data from regions such...
Article
Full-text available
Carbon cycling associated with biological soil crusts, which occupy interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few...
Article
Full-text available
Though biological soil crusts (biocrusts) form abundant covers in arid and semiarid regions, their competing effects on soil hydrologic conditions are rarely accounted for in models. This study presents the modification of a soil water balance model to account for the presence of biocrusts at different levels of development (LOD) and their impact o...
Article
Full-text available
Drylands represent the planet’s largest terrestrial biome, and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil-surface communities of lichens, mosses, and/or cyan...
Article
Full-text available
Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems and can be dramatically altered with soil surface disturbance. In this study, through a simulated rainfall experiment, we examined biocrust hydrologic responses to disturbance (trampling and scraping) at different developmental...
Article
Biological soil crusts (hereafter, “biocrusts”) dominate soil surfaces in nearly all dryland environments. To better understand the influence of water content on carbon (C) exchange, we assessed the ability of dual-probe heat-pulse (DPHP) sensors, installed vertically and angled, to measure changes in near-surface water content. Four DPHP sensors w...
Chapter
Full-text available
Monitoring the status and trends of species is critical to their conservation and management. However, the current state of biodiversity monitoring is insufficient to detect such for most species and habitats, other than in a few localised areas. One of the biggest obstacles to adequate monitoring is the lack of local capacity to carry out such pro...
Article
Full-text available
Introductions of biocontrol beetles (tamarisk beetles) are causing dieback of exotic tamarisk in riparian zones across the western United States, yet factors that determine plant communities that follow tamarisk dieback are poorly understood. Tamarisk-dominated soils are generally higher in nutrients, organic matter, and salts than nearby soils, an...
Article
Full-text available
N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BS...