August 2024
·
6 Reads
It is folklore that tree-width is monotone under taking subgraphs (i.e. injective graph homomorphisms) and contractions (certain kinds of surjective graph homomorphisms). However, although tree-width is obviously not monotone under any surjective graph homomorphism, it is not clear whether contractions are canonically the only class of surjections with respect to which it is monotone. We prove that this is indeed the case: we show that - up to isomorphism - contractions are the only surjective graph homomorphisms that preserve tree decompositions and the shape of the decomposition tree. Furthermore, our results provide a framework for answering questions of this sort for many other kinds of combinatorial data structures (such as directed multigraphs, hypergraphs, Petri nets, circular port graphs, half-edge graphs, databases, simplicial complexes etc.) for which natural analogues of tree decompositions can be defined.