J. R. Bond's research while affiliated with University of Toronto and other places

Publications (750)

Preprint
Upcoming high-redshift observations of the anisotropic distribution of diffuse gas surrounding galaxy clusters, observed through the thermal Sunyaev-Zel'dovich (tSZ) effect, will help distinguish between different astrophysical feedback models, account for baryons that appear to be `missing' from the cosmic census, and potentially be used as a cosm...
Preprint
We present the deconvolved distribution estimator (DDE), an extension of the voxel intensity distribution (VID), in the context of future observations proposed as part of the CO Mapping Array Project (COMAP). The DDE exploits the fact that the observed VID is a convolution of correlated signal intensity distributions and uncorrelated noise or inter...
Preprint
Full-text available
Diverse astrophysical observations suggest the existence of cold dark matter that interacts only gravitationally with radiation and ordinary baryonic matter. Any nonzero coupling between dark matter and baryons would provide a significant step towards understanding the particle nature of dark matter. Measurements of the cosmic microwave background...
Preprint
We use data from the Atacama Cosmology Telescope (ACT) DR4 to search for the presence of neutrino self-interaction in the cosmic microwave background. Consistent with prior works, the posterior distributions we find are bimodal, with one mode consistent with $\Lambda$CDM and one where neutrinos strongly self-interact. By combining ACT data with lar...
Article
Full-text available
Line intensity mapping (LIM) is a new technique for tracing the global properties of galaxies over cosmic time. Detection of the very faint signals from redshifted carbon monoxide (CO), a tracer of star formation, pushes the limits of what is feasible with a total-power instrument. The CO Mapping Project Pathfinder is a first-generation instrument...
Article
Full-text available
The cosmic web contains filamentary structure on a wide range of scales. On the largest scales, superclustering aligns multiple galaxy clusters along intercluster bridges, visible through their thermal Sunyaev–Zel’dovich signal in the cosmic microwave background. We demonstrate a new, flexible method to analyze the hot gas signal from multiscale ex...
Article
Full-text available
We introduce COMAP- EoR , the next generation of the Carbon Monoxide Mapping Array Project aimed at extending CO intensity mapping to the Epoch of Reionization. COMAP- EoR supplements the existing 30 GHz COMAP Pathfinder with two additional 30 GHz instruments and a new 16 GHz receiver. This combination of frequencies will be able to simultaneously...
Article
Full-text available
We describe the first-season CO Mapping Array Project (COMAP) analysis pipeline that converts raw detector readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data selection, and mapmaking. Absolute gain calibration relies on a combination of instrumental and astrophysical sources, while relative...
Article
Full-text available
We present the current state of models for the z ∼ 3 carbon monoxide (CO) line intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy–halo connec...
Article
We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed–Feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer fun...
Article
Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev Zel'dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe, and...
Article
Full-text available
We present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zel’dovich (TSZ) maps from Planck and the Atacama Cosmology Telescope and weak galaxy lensing shears measured during the first three years of observations of the Dark Energy Survey. This correlation is sensitive to the thermal energy in baryons over a wide redshif...
Article
Full-text available
Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES’s small...
Article
Full-text available
Modern cosmic microwave background (CMB) analysis pipelines regularly employ complex time-domain filters, beam models, masking, and other techniques during the production of sky maps and their corresponding angular power spectra. However, these processes can generate couplings between multipoles from the same spectrum and from different spectra, in...
Preprint
This is a solicited whitepaper for the Snowmass 2021 community planning exercise. The paper focuses on measurements and science with the Cosmic Microwave Background (CMB). The CMB is foundational to our understanding of modern physics and continues to be a powerful tool driving our understanding of cosmology and particle physics. In this paper, we...
Preprint
Full-text available
This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case...
Article
Full-text available
We present the first linear polarization measurements from the 2015 long-duration balloon flight of Spider , which is an experiment that is designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. The results from these measurements include maps and angular power spectra from observations of 4.8% of the sk...
Article
Full-text available
CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of...
Article
Ultralight axions and other bosons are dark matter candidates present in many high energy physics theories beyond the Standard Model. In particular, the string axiverse postulates the existence of up to 𝒪(100) light scalar bosons constituting the dark sector. We test the validity of the effective field theory of large-scale structure approach to mi...
Article
Full-text available
Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev Zel'dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe, and...
Preprint
We present a reproduction of the Planck 2018 angular power spectra at $\ell > 30$, and associated covariance matrices, for intensity and polarization maps at 100, 143 and 217 GHz. This uses a new, publicly available, pipeline that is part of the PSpipe package. As a test case we use the same input maps, ancillary products, and analysis choices as i...
Article
Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysical or cosmological quantities derived from measurements. We consider a theoretical treatment of the...
Article
We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev–Zel'dovich effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energy Survey (DES). The splashback radius is consistent with CDM-only simulations and is located at ${2.4}_{-...
Article
We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev–Zel’dovich effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energy Survey (DES). The splashback radius is consistent with CDM-only simulations and is located at 2.4 − 0.4...
Preprint
Full-text available
Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES's small...
Article
The Sunyaev–Zel’dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370...
Article
Full-text available
We present the XFaster analysis package, a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. It uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In contrast to convent...
Article
We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the 1.65′ resolut...
Preprint
We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer fun...
Preprint
The CO Mapping Array Project (COMAP) aims to use line intensity mapping of carbon monoxide (CO) to trace the distribution and global properties of galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate the technologies and techniques needed for this goal, a Pathfinder instrument has been constructed and fielded. Sensitive t...
Preprint
We present the current state of models for the $z\sim3$ carbon monoxide (CO) line-intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy-halo con...
Preprint
We introduce COMAP-EoR, the next generation of the Carbon Monoxide Mapping Array Project aimed at extending CO intensity mapping to the Epoch of Reionization. COMAP-EoR supplements the existing 30 GHz COMAP Pathfinder with two additional 30 GHz instruments and a new 16 GHz receiver. This combination of frequencies will be able to simultaneously map...
Preprint
We describe the first season COMAP analysis pipeline that converts raw detector readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data selection, and map-making. Absolute gain calibration relies on a combination of instrumental and astrophysical sources, while relative gain calibration exploits...
Preprint
Line intensity mapping (LIM) is a new technique for tracing the global properties of galaxies over cosmic time. Detection of the very faint signals from redshifted carbon monoxide (CO), a tracer of star formation, pushes the limits of what is feasible with a total-power instrument. The CO Mapping Project (COMAP) Pathfinder is a first-generation ins...
Article
Full-text available
The CO Mapping Array Project (COMAP) aims to use line intensity mapping of carbon monoxide (CO) to trace the distribution and global properties of galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate the technologies and techniques needed for this goal, a Pathfinder instrument has been constructed and fielded. Sensitive t...
Preprint
Full-text available
Modern CMB analysis pipelines regularly employ complex time-domain filters, beam models, masking, and other techniques during the production of sky maps and their corresponding angular power spectra. However, these processes can generate couplings between multipoles from the same spectrum and from different spectra, in addition to the typical power...
Article
Full-text available
We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev-Zel’dovich (SZ)-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 dataset. With signal-to-noise of 62 (45) fo...
Article
The Simons Observatory is a ground-based cosmic microwave background experiment that consists of three 0.4 m small-aperture telescopes and one 6 m Large Aperture Telescope, located at an elevation of 5300 m on Cerro Toco in Chile. The Simons Observatory Large Aperture Telescope Receiver (LATR) is the cryogenic camera that will be coupled to the Lar...
Article
We present a 5.4σ detection of the pairwise kinematic Sunyaev-Zeldovich (kSZ) effect using Atacama Cosmology Telescope (ACT) and Planck CMB observations in combination with Luminous Red Galaxy samples from the Sloan Digital Sky Survey (SDSS) DR15 catalog. Results are obtained using three ACT CMB maps: co-added 150 and 98 GHz maps, combining observa...
Article
We present measurements of the average thermal Sunyaev Zel’dovich (tSZ) effect from optically selected galaxy groups and clusters at high signal-to-noise (up to 12σ) and estimate their baryon content within a 2.1′ radius aperture. Sources from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey DR15 catalog overlap with 3,700 sq de...
Preprint
Full-text available
Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev Zel'dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe, and...
Preprint
We present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zeldovich (tSZ) maps from ${\it Planck}$ and the Atacama Cosmology Telescope (ACT) and weak galaxy lensing shears measured during the first three years of observations of the Dark Energy Survey (DES Y3). This correlation is sensitive to the thermal energy in baryo...
Preprint
Full-text available
We present a detailed overview of the science goals and predictions for the Prime-Cam receiver being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6-m aperture submillimeter telescope being built (first light in late 2023) by an international consortium of i...
Preprint
The Cosmic Web contains filamentary structure on a wide range of scales. On the largest scales, superclustering aligns multiple galaxy clusters along inter-cluster bridges, visible through their thermal Sunyaev-Zel'dovich signal in the Cosmic Microwave Background. We demonstrate a new, flexible method to analyze the gas signal from multi-scale exte...
Preprint
We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65'$ resol...
Article
Full-text available
We report on the serendipitous discovery of three transient millimeter-wave sources using data from the Atacama Cosmology Telescope. The first, detected at R.A. = 273.8138, decl. = -49.4628 at ∼50σ total, brightened from less than 5 mJy to at least 1100 mJy at 150 GHz with an unknown rise time shorter than 13 days, during which the increase from 25...
Article
Two recent large data releases for the Atacama Cosmology Telescope (ACT), called DR4 and DR5, are available for public access. These data include temperature and polarization maps that cover nearly half the sky at arcminute resolution in three frequency bands; lensing maps and component-separated maps covering ~2100 deg² of sky; derived power spect...
Preprint
The Sunyaev-Zel'dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370...
Preprint
Full-text available
We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev-Zel'dovich-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 dataset. With signal-to-noise of 62 (43) for gal...
Article
The anisotropy or triaxiality of massive dark matter haloes largely defines the structure of the cosmic web, in particular the filaments that join the haloes together. Here, we investigate such oriented correlations in mass-Peak Patch halo catalogues by using the initial strain tensor of spherical proto-halo regions to orient the haloes. To go beyo...
Preprint
Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysical or cosmological quantities derived from measurements. We consider a theoretical treatment of the...
Preprint
Full-text available
The Simons Observatory (SO) is a Cosmic Microwave Background (CMB) experiment to observe the microwave sky in six frequency bands from 30GHz to 290GHz. The Observatory -- at $\sim$5200m altitude -- comprises three Small Aperture Telescopes (SATs) and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the d...
Preprint
Full-text available
Ultralight axions and other bosons are dark matter candidates present in many high energy physics theories beyond the Standard Model. In particular, the string axiverse postulates the existence of up to $\mathcal{O}(100)$ light scalar bosons constituting the dark sector. Considering a mixture of axions and cold dark matter, we obtain upper bounds f...
Preprint
Full-text available
We present the XFaster analysis package. XFaster is a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. XFaster uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In con...
Article
The Simons Observatory is a Cosmic Microwave Background experiment to observe the microwave sky in six frequency bands from 30 to 290 GHz. The Observatory—at ∼5200 m altitude—comprises three Small Aperture Telescopes and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of th...
Preprint
Full-text available
We present the first linear polarization measurements from the 2015 long-duration balloon flight of SPIDER, an experiment designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. Results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, a...
Preprint
Full-text available
Two recent large data releases for the Atacama Cosmology Telescope (ACT), called DR4 and DR5, are available for public access. These data include temperature and polarization maps that cover nearly half the sky at arcminute resolution in three frequency bands; lensing maps and component-separated maps covering ~ 2,100 deg^2 of sky; derived power sp...
Article
Many models of high energy physics suggest that the cosmological dark sector consists of not just one, but a spectrum of ultralight scalar particles with logarithmically distributed masses. To study the potential signatures of low concentrations of ultralight axion (also known as fuzzy) dark matter, we modify Lagrangian perturbation theory (LPT) by...
Preprint
Full-text available
The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be coupled to the Large Aperture Telescope located at an elevation of 5,200 m on Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wav...
Article
Full-text available
We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg² of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtain...
Preprint
We present high signal-to-noise measurements (up to 12$\sigma$) of the average thermal Sunyaev Zel'dovich (tSZ) effect from optically selected galaxy groups and clusters and estimate their baryon content within a 2.1$^\prime$ radius aperture. Sources from the Sloan Digital Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS) DR15 catalo...
Preprint
We present a 5.4$\sigma$ detection of the pairwise kinematic Sunyaev-Zel'dovich (kSZ) effect using Atacama Cosmology Telescope (ACT) and $\it{Planck}$ CMB observations in combination with Luminous Red Galaxy samples from the Sloan Digital Sky Survey (SDSS) DR15 catalog. Results are obtained using three ACT CMB maps: co-added 150 GHz and 98 GHz maps...
Preprint
The anisotropy or triaxiality of massive dark matter haloes largely defines the structure of the cosmic web, in particular the filaments that join the haloes together. Here we investigate such oriented correlations in mass-Peak Patch halo catalogues by using the initial strain tensor of spherical proto-halo regions to orient the haloes. To go beyon...
Article
We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev-Zel'dovich-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 dataset. With signal-to-noise of 62 (43) for gal...
Article
We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg² of the 2013–2016 survey, which covers >15000 deg² at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic er...
Article
We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013–2016 at 98 and 150 GHz. The maps cover more than 17,000 deg², the deepest 600 deg² with noise levels below 10μK-arcmin. We use the power spectrum derived from almost 6,0...