J. Besprosvany’s research while affiliated with National Autonomous University of Mexico and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (39)


Heavy-quark mass relation from a standard-model boson operator representation in terms of fermions
  • Article

January 2025

Jaime Besprosvany

·

Rebeca Sanchez

Heavy-quark mass relation from a standard-model boson operator representation in terms of fermions
  • Preprint
  • File available

December 2024

·

1 Read

The standard-model can be equivalently represented with its fields in a spin-extended basis, departing from fermion degrees of freedom. The common Higgs operator connects the electroweak and Yukawa sectors, restricting the top and bottom quark masses[Phys. Rev. D 99, 073001, 2019]. Using second quantization, within the heavy-particle sector, electroweak vectors, the Higgs field, and symmetry operators are expanded in terms of bilinear combinations of top and bottom quark operators, considering discrete degrees of freedom and chirality. This is interpreted as either a basis choice or as a description of composite models. The vacuum expectation value is calculated quantum mechanically, which relates to the common mass-generating scalar operator and it reproduces the vector and quark-doublet masses. This also links the corresponding scalar-vector and Yukawa vertices, and restricts the t- and b-quark masses in a hierarchy relation.

Download

Left panel: Evolution of Ωdm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{dm}$$\end{document} (solid lines), Ωg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{g}$$\end{document} (dashed lines) and Ωb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{b}$$\end{document} (short-dashed lines) versus scale factor a for x=0.97\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0.97$$\end{document}, Ωb0=0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{b0}=0.05$$\end{document}, Ωi0=-1.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{i0}=-1.1$$\end{document}, ΩG0=0.72\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{G0}=0.72$$\end{document} and three choices of parameter Ωm0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}$$\end{document}: 0.4 (black lines), 0.52 (green lines), and 0.7 (red lines). Right panel: Evolution of effective adiabatic parameters weff(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{eff}^{(g)}$$\end{document} (solid lines) and weff(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{eff}^{(m)}$$\end{document} (dashed lines) versus the scale factor a for the same choice of parameters as the left panel (colour figure online)
Top panel: The 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document} and 2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sigma $$\end{document} likelihoods for the free parameters as obtained in [27]. Bottom panel: The 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document} and 2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sigma $$\end{document} likelihoods for the free parameters in the Ωm0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}$$\end{document} versus Ωi0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{i0}$$\end{document} space for Ωb0H02=0.022\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{b0}H_0^2=0.022$$\end{document}, H0=70km/(Mpscs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0=70\ \mathrm{km} /(\mathrm{Mpsc}\,\mathrm{s})$$\end{document} shown as obtained in [27]. Lines on the left side of the plot represent the bound Ωdm0+ΩG0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{dm0}+\Omega _{G0}=0$$\end{document} given by (18) for three different choices of x: x=0.85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0.85$$\end{document} (green line), x=0.97\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0.97$$\end{document} (red line), and, x=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=1$$\end{document} (black line). Lines on the right side represent the bound Ωc0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{c0}=0$$\end{document}. The space closed by the lines represents the parameter choices with Ωdm0+ΩG0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{dm0}+\Omega _{G0}>0$$\end{document} and Ωc0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{c0}>0$$\end{document}
Potential a′′/a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a''/a$$\end{document} versus scale factor a, with each plot variating x, ΩG0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{ G0}$$\end{document}, Ωi0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{ i0}$$\end{document} and Ωm0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}$$\end{document}, and fixing the other parameters. The one parameter with a noticeable impact on the potential is Ωm0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}$$\end{document}, as the rest of the free parameters leave the potential unchanged up to eye view
Evolution of PGW amplitude for the IBEG model from the beginning of dust a=0.0001\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0.0001$$\end{document} until today a=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=1$$\end{document} era with x=0.97\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0.97$$\end{document}, ΩG0=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{G0}=0.5$$\end{document}, and Ωi0=-1.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{i0}=-1.10$$\end{document} for different wave-number choices: k=40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=40$$\end{document}, k=20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=20$$\end{document}, and k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document}. The black line represents the evolution with Ωm0=0.41\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}=0.41$$\end{document}, the green line represents Ωm0=0.52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}=0.52$$\end{document}, and the red line represents Ωm0=0.70\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}=0.70$$\end{document}
IBEG-model power spectrum P with x=0.97\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0.97$$\end{document}, ΩG0=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{G0}=0.5$$\end{document}, and Ωi0=-1.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{i0}=-1.10$$\end{document}. The black line represents Ωm0=0.41\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}=0.41$$\end{document}, the green line Ωm0=0.52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}=0.52$$\end{document}, and the red line Ωm0=0.70\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}=0.70$$\end{document}. P and the frequency k are expressed in ergs/cm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{erg} \ \mathrm{s/cm^3}$$\end{document} and s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{s}^{-1}$$\end{document}, respectively

+1

Primordial gravitational waves spectrum in the interacting Bose–Einstein gas model

General Relativity and Gravitation

We study the evolution and power spectrum of primordial gravitational waves in the interactive Bose–Einstein gas model for dark energy, relevant, as it addresses the coincidence problem. The model is applied in the radiation, matter and dark-energy domination stages. The model introduces a scale factor associated to the radiation-matter transition which influences the gravitational spectrum. We focus on the impact of the free parameters on both the gravitational waves amplitude and its power-spectrum slope. For sets of parameters fitting Hubble’s law, we show that the model’s parameter for today’s dark-matter energy density, the mass component, has a noticeable impact on such waves, while the others produce an indistinguishable effect. The feasibility of detecting such waves under present and future measurements is discussed.


Figure 1: Feynman diagram with vertex igγ µ , related to solutions at fixed volume V , as described in Eq. 3. Incoming fermion-antifermion f -¯ f have four-
Compositeness, Bargmann-Wigner solutions within a U(1)-interaction quantum-field-theory expansion, and charge

January 2021

·

35 Reads

New solutions of the Bargmann-Wigner equations are obtained: free fermion-antifermion pairs, each satisfying Dirac's equation, with parallel momenta and momenta on a plane, produce vectors satisfying Proca's equations. These equations are consistent with Dirac's and Maxwell's equations, as zero-order conditions within a Lagrangian expansion for the U(1)-symmetry quantum field theory. Such vector solutions' demand that they satisfy Maxwell's equations and quantization fix the charge. The current equates the vector field, reproducing the superconductivity London equations, thus, binding and screening conditions. The derived vertex connects to QCD superconductivity and constrains four-fermion interaction composite models.


Primordial gravitational waves spectrum in the interacting Bose-Einstein gas model

August 2020

·

9 Reads

We study the evolution and power spectrum of primordial gravitational waves in the interactive Bose-Einstein gas model for dark energy, relevant, as it addresses the coincidence problem. The model is applied in the radiation, matter and dark-energy domination stages. The model introduces a scale factor associated with the radiation-matter transition which influences the gravitational spectrum. We focus on the impact of the free parameters on both the gravitational waves amplitude and its power-spectrum slope. For sets of parameters fitting Hubble's law, we show that the model's parameter for today's dark-matter energy density has a noticeable impact on such waves, while the others produce an indistinguishable effect. The feasibility of detecting such waves under present and future measurements is discussed.


Likelihood of the free parameters of the model for the Hubble Space Telescope Gaussian prior. The darker shaded region corresponds to 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document}, while the lighter shaded region corresponds to 2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sigma $$\end{document}. The plots at the right of the likelihoods represent the free-parameter probability distribution, with appropriate scale. Similarly for Figs. 2, 3, 4 (color figure online)
Likelihood of the free parameters of the model obtained from the H(z) data. The darker shaded region correspond to 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document}, while the lighter shaded region correspond to 2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sigma $$\end{document} (color figure online)
Likelihood of the free parameters of the model obtained from the combined HST+H(z)+JLA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{HST}+H(z)+\mathrm{JLA}$$\end{document} data. The darker shaded region correspond to 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document}, while the lighter shaded region correspond to 2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sigma $$\end{document} (color figure online)
Bound Ωdm0+ΩG0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{dm0}+\Omega _{G0}=0$$\end{document} given by (23) in the Ωm0versusΩi0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0} \, \hbox {versus} \, \Omega _{i0}$$\end{document} space for Ωb0h2=0.022\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{b0}h^2=0.022$$\end{document}, h=0.70\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h=0.70$$\end{document} and three different choices of x: x=0.85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0.85$$\end{document} (green line), x=0.97\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0.97$$\end{document} (red line), and, x=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=1$$\end{document} (black line). The space on the right-hand side of the line represents parameter choices with Ωdm0+ΩG0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{dm0}+\Omega _{G0}>0$$\end{document}. The 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document} and 2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sigma $$\end{document} likelihoods of the HST+H(z)+JLA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{HST}+H(z)+\mathrm{JLA}$$\end{document} case are also shown for comparison (color figure online)
The lines represent log10(ain)versusΩG0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log _{10}(a_{in})\,\hbox {versus}\,\Omega _{G0}$$\end{document} for Ωb0h2=0.022\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{b0}h^2=0.022$$\end{document}, h=0.70\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h=0.70$$\end{document}, x=0.97\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0.97$$\end{document}, Ωm0=0.52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m0}=0.52$$\end{document} and Ωi0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{i0}$$\end{document}, in the region with Ωdm0+ΩG0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{dm0}+\Omega _{G0}>0$$\end{document}
Observational constraints on the free parameters of an interacting Bose-Einstein gas as a dark-energy model

November 2018

·

51 Reads

·

1 Citation

General Relativity and Gravitation

Dark energy is modelled by a Bose-Einstein gas of particles with an attractive interaction. It is coupled to cold dark matter, within a flat universe, for the late-expansion description, producing variations in particle-number densities. The model's parameters, and physical association, are: ΩG0\Omega_{G0}, Ωm0\Omega_{m0}, the dark-energy rest-mass energy density and the dark-matter term scaling as a mass term, respectively; Ωi0\Omega_{i0}, the self-interaction intensity; x, the energy exchange rate. Energy conservation relates such parameters. The Hubble equation omits ΩG0\Omega_{G0}, but also contains h, the present-day expansion rate of the flat Friedman--Lem\^aitre--Robertson--Walker metric, and Ωb0\Omega_{b0}, the baryon energy density, used as a prior. This results in the four effective chosen parameters Ωb0\Omega_{b0}, h, Ωm0\Omega_{m0}, Ωi0\Omega_{i0}, fit with the Hubble expansion rate H(z), and data from its value today, near distance, and supernovas. We derive wide 1σ1\sigma and 2σ2\sigma likelihood regions compatible with definite positive total CDM and IBEG mass terms. Additionally, the best-fit value of parameter x relieves the coincidence problem, and a second potential coincidence problem related to the choice of ΩG0\Omega_{G0}.


Observational constraints on the free parameters of an interacting Bose-Einstein gas as a dark-energy model

February 2018

·

2 Reads

Dark energy is modelled by a Bose-Einstein gas of particles with an attractive interaction. It is coupled to cold dark matter, within a flat universe, for the late-expansion description, producing variations in particle-number densities. The model's parameters, and physical association, are: ΩG0\Omega_{G0}, Ωm0\Omega_{m0}, the dark-energy rest-mass energy density and the dark-matter term scaling as a mass term, respectively; Ωi0\Omega_{i0}, the self-interaction intensity; x, the energy exchange rate. Energy conservation relates such parameters. The Hubble equation omits ΩG0\Omega_{G0}, but also contains h, the present-day expansion rate of the flat Friedman--Lem\^aitre--Robertson--Walker metric, and Ωb0\Omega_{b0}, the baryon energy density, used as a prior. This results in the four effective chosen parameters Ωb0\Omega_{b0}, h, Ωm0\Omega_{m0}, Ωi0\Omega_{i0}, fit with the Hubble expansion rate H(z), and data from its value today, near distance, and supernovas. We derive wide 1σ1\sigma and 2σ2\sigma likelihood regions compatible with definite positive total CDM and IBEG mass terms. Additionally, the best-fit value of parameter x relieves the coincidence problem, and a second potential coincidence problem related to the choice of ΩG0\Omega_{G0}.


Heavy quarks within the electroweak multiplet

January 2017

Standard-model fields and their associated electroweak Lagrangian are equivalently expressed in a shared spin basis. The scalar-vector terms are written with scalar-operator components acting on quark-doublet elements, and shown to be parametrization-invariant. Such terms, and the t- and b-quark Yukawa terms are linked by the identification of the common mass-generating Higgs operating upon the other fields, after acquiring a vacuum expectation value v. Thus, the customary vector masses are related to the fermions', fixing the t-quark mass mtm_t with the relation mt2+mb2=v2/2m^2_t+m^2_b=v^2/2 either for maximal hierarchy, or given the b-quark mass mbm_b, implying mt173.9m_t \simeq 173.9 GeV, for v=246 GeV. A sum rule is derived for all quark masses that generalizes this restriction. An interpretation follows that electroweak bosons and heavy quarks belong in a multiplet.


Heavy quarks within electroweak multiplet

January 2017

·

41 Reads

·

2 Citations

Physical Review D

Standard-model fields and their associated electroweak Lagrangian are equivalently expressed in a shared spin basis. The scalar-vector terms are written with scalar-operator components acting on quark-doublet elements, and shown to be parametrization-invariant. Such terms, and the t- and b-quark Yukawa terms are linked by the identification of the common mass-generating Higgs operating upon the other fields, after acquiring a vacuum expectation value v. Thus, the customary vector masses are related to the fermions', fixing the t-quark mass mtm_t with the relation mt2+mb2=v2/2m_t^2+m_b^2=v^2/2 , either for maximal hierarchy, or given the b-quark mass mbm_b, implying mt173.9m_t \simeq 173.9 GeV, for v=246 GeV. An interpretation follows that electroweak bosons and heavy quarks belong in a multiplet.


Quark horizontal flavor symmetry and two-Higgs doublet in (7+1)-dimensional extended spin space

November 2016

·

6 Reads

·

1 Citation

An extended spin-space model in 7+1 dimensions is presented that describes the standard-model electroweak quark sector. Up to four generations of massless and massive quarks and two-Higgs doublets derive from the associated representation space, in addition to the W- and Z-vector bosons. Other mass operators are obtained that put restrictions on additional non-Higgs scalars and their vacuum expectation value. After symmetry breaking, the scalar components give rise to a hierarchy effect vertically (within doublets) associated to the Higgs fields, and horizontally (within generations) associated to the non-Higgs elements.


Citations (15)


... One productive approach to obtain new information on the SM relies on these patterns. Ref. [2] rewrites the SM Lagrangian equivalently in terms of a matrix basis, for all particles (scalar, vector, spin 1/2). It derives a mass relation (classically) for the quark masses, under a weak SM assumption of a common scalar operator between the electroweak sectors, using a discrete equivalent basis induced by a SM extension; spin and gauge degrees of freedom are separated, and the bosons' degrees of freedom are formally composite of the fermions. ...

Reference:

Heavy-quark mass relation from a standard-model boson operator representation in terms of fermions
Heavy quarks within electroweak multiplet

Physical Review D

... This space contains a (3+1)-dimensional subspace and one beyond 3+1, linked, respectively, to Lorentz and scalar degrees of freedom [12]. At each dimension, a finite number of Lorentz-invariant partitions are generated with specific symmetries and representations, reproducing particular SM features, where the cases with dimension 5+1 [13], 7+1 [14], and 9+1 [15] were studied. ...

Quark horizontal flavor symmetry and two-Higgs doublet in (7+1)-dimensional extended spin space
  • Citing Article
  • November 2016

... A previously proposed SM extension [11], based on a shared extended spin space, reproduces these SM-field features: SM fields are replicated, as the matrix structure accommodates a fundamental-adjoint representation composite structure. This space contains a (3+1)-dimensional subspace and one beyond 3+1, linked, respectively, to Lorentz and scalar degrees of freedom [12]. At each dimension, a finite number of Lorentz-invariant partitions are generated with specific symmetries and representations, reproducing particular SM features, where the cases with dimension 5+1 [13], 7+1 [14], and 9+1 [15] were studied. ...

Representation of quantum field theory in an extended spin space and fermion mass hierarchy

... In another interpretation, one proceeds by checking additional discrete spaces, described in terms of a Clifford algebra and independently of the configuration-space description, that allow for the inclusion of the relevant states and operators [18]. In this respect, a (7+1)-dimensional[d] discrete space is the minimum space that allows for the description of different flavor quarks and the operators that classify them, since lower dimensional spaces have been studied and found not big enough for that purpose [18,[20][21][22]. ...

ELECTROWEAKLY INTERACTING SCALAR AND GAUGE BOSONS, AND LEPTONS, FROM FIELD EQUATIONS ON SPIN (5+1)-DIMENSIONAL SPACE

... Eq. 45 is consistent with the expectation value of a normalized configuration composed of a combination of fields with the coupling constant interpreted as normalization [31,32]; thus, 1 2 gI 3 |0⟩ is the state associated to W 3 0 with normalization ⟨0| 1 4 I 3 I 3 |0⟩ = N, ...

Standard-Model Coupling Constants from Compositeness

... GP equation may be considered the non-relativistic limit of ϕ 4 theories [21,22,23]. Many researches exist on Bose-Einstein condensate (BEC) scalar field models for DE and DM [21,24,25,26,27,28,29,30,31,32]. They are usually studied at a macroscopic level (i.e., at the level of number densities or distribution functions) in cosmology, while its microscopic nature at the level of particle physics is not considered sufficiently. ...

Coincidence problem within dark energy as a coupled self-interacting Bose-Einstein gas

... In another interpretation, one proceeds by checking additional discrete spaces, described in terms of a Clifford algebra and independently of the configuration-space description, that allow for the inclusion of the relevant states and operators [18]. In this respect, a (7+1)-dimensional[d] discrete space is the minimum space that allows for the description of different flavor quarks and the operators that classify them, since lower dimensional spaces have been studied and found not big enough for that purpose [18,[20][21][22]. ...

Electroweak model from generalized dirac equation with boson and fermion solutions
  • Citing Article
  • August 2001

Nuclear Physics B - Proceedings Supplements

... (See, for example, Refs. [15][16][17][18][19][20] in the case of inclusive (e, e ) scattering.) Moreover, in analogy with other quantum many-body systems [21][22][23], the functions ρ 2h ( r 1 , r 2 , r 1 ) and η( p, Q) are expected to play central roles in fundamental sum rules that furnish insight into the nature of elementary excitations of the nuclear system. ...

Two-body and many-body final state interaction corrections in the nuclear matter response function around the quasielastic peak
  • Citing Article
  • May 1996

Nuclear Physics A