Ilona Chromińska's research while affiliated with Warsaw University of Technology and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publication (1)
We describe the adsorption behaviour and rheological properties of a calf skin type I collagen, and of its hydrolysates obtained using a Clostridium histolyticum collagenase (CHC) under moderate conditions (pH 7, 37°C). The effect of CHC concentration (2×10(-9)-2×10(-6)M) and incubation time (35-85min) was studied and optimised to achieve the highe...
Citations
... This proves their obvious promise for the use as scaffolds in regenerative medicine. It is well-known that proteolytic enzymes are often included in the initial reagents for the preparation of scaffolds containing proteins [36][37][38][39][40][41][42][43][44][45]. This leads to the hydrolysis of the peptide bond of proteins, and the resulting peptides with lower MW compared to the original proteins form new structural structures, namely scaffolds. ...