August 2024
·
23 Reads
·
2 Citations
International Journal of Frontiers in Engineering and Technology Research
This paper investigates the application of AI-driven solutions to enhance network performance and Quality of Service (QoS) in future telecommunications. As the demand for higher bandwidth and seamless connectivity grows, traditional network management approaches face significant challenges in meeting these requirements. The study aims to address these challenges by leveraging artificial intelligence (AI) technologies, such as machine learning, neural networks, and predictive analytics. The research methodology involves a comprehensive review of current literature, case studies, and experimental analysis of AI implementations in telecommunications. We explore various AI techniques for network optimization, including traffic prediction, anomaly detection, resource allocation, and automated network maintenance. Through these methods, the study identifies the key benefits and potential risks associated with AI-driven network management. Key findings highlight the significant improvements in network efficiency, reduced latency, enhanced fault detection, and overall better QoS achieved through AI integration. AI-driven solutions enable dynamic and adaptive network configurations, ensuring optimal performance even under varying traffic conditions and unexpected disruptions. Additionally, the predictive capabilities of AI help in preemptively addressing network issues before they impact users, thus maintaining high QoS standards. The paper concludes that AI-driven solutions present a promising avenue for the future of telecommunications, offering substantial enhancements in network performance and QoS. However, it also emphasizes the need for robust AI models, continuous monitoring, and ethical considerations to mitigate potential risks. The findings underscore the transformative potential of AI in shaping the next generation of telecommunications infrastructure, ensuring reliable and high-quality connectivity for users.