Hichem Horra’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


Machine learning in material fatigue.
Conventional vs. proposed ML methodology for CT fatigue life estimation.
Full-scale fatigue testing equipment [23].
Lab-scale fatigue testing machine [2,39].
Flowchart process for predicting fatigue life (N cycle).

+13

Innovative Approach Integrating Machine Learning Models for Coiled Tubing Fatigue Modeling
  • Article
  • Full-text available

March 2025

·

30 Reads

Khalil Moulay Brahim

·

Ahmed Hadjadj

·

·

[...]

·

Hichem Horra

Coiled tubing (CT) plays a pivotal role in oil and gas well intervention operations due to its advantages, such as flexibility, fast mobilization, safety, low cost, and its wide range of applications, including well intervention, cleaning, stimulation, fluid displacement, cementing, and drilling. However, CT is subject to fatigue and mechanical damage caused by repeated bending cycles, internal pressure, and environmental factors, which can lead to premature failure, high operational costs, and production downtime. With the development of CT properties and modes of application, traditional fatigue life prediction methods based on analytical models integrated in the tracking process showed, in some cases, an underestimate or overestimate of the actual fatigue life of CT, particularly when complex factors like welding type, corrosive environment, and high-pressure variation are involved. This study addresses this limitation by introducing a comprehensive machine learning-based approach to improve the accuracy of CT fatigue life prediction, using a dataset derived from both lab-scale and full-scale fatigue tests. We incorporated the impact of different parameters such as CT grades, wall thickness, CT diameter, internal pressure, and welding types. By using advanced machine learning techniques such as artificial neural networks (ANNs) and Gradient Boosting Regressor, we obtained a more precise estimation of the number of cycles to failure than traditional models. The results from our machine learning analysis demonstrated that CatBoost and XGBoost are the most suitable models for fatigue life prediction. These models exhibited high predictive accuracy, with R² values exceeding 0.94 on the test set, alongside relatively low error metrics (MSE, MAE and MAPE), indicating strong generalization capability. The results of this study show the importance of the integration of machine learning for CT fatigue life analysis and demonstrate its capacity to enhance prediction accuracy and reduce uncertainty. A detailed machine learning model is presented, emphasizing the capability to handle complex data and improve prediction under diverse operational conditions. This study contributes to more reliable CT management and safer, more cost-efficient well intervention operations.

Download

3D rock strength prediction model using geostatistics methods

November 2024

·

5 Reads

STUDIES IN ENGINEERING AND EXACT SCIENCES

O mapeamento 3D da resistência das rochas desempenha um papel crucial na otimização da perfuração, fornecendo informações detalhadas sobre as propriedades geomecânicas do subsolo, que são essenciais para a otimização da perfuração. Ao criar uma representação tridimensional das variações de resistência da rocha, os engenheiros podem identificar áreas de alta e baixa resistência, permitindo-lhes adaptar técnicas e equipamentos de perfuração a condições geológicas específicas. Esta precisão reduz o risco de falha do equipamento, minimiza a probabilidade de instabilidade do poço e aumenta a eficiência operacional geral. Além disso, compreender a distribuição da resistência das rochas ajuda a prever riscos potenciais de perfuração, como fraturas e falhas, permitindo uma tomada de decisão proativa que pode economizar tempo e recursos. Em última análise, o mapeamento 3D da resistência das rochas não só melhora o desempenho e a segurança da perfuração, mas também contribui para uma extração de recursos mais econômica, otimizando a colocação dos poços e reduzindo o tempo não produtivo durante as campanhas de perfuração. Este estudo apresenta uma abordagem para prever a resistência das rochas no espaço tridimensional usando métodos geoestatísticos. Utilizamos um conjunto de dados, incluindo propriedades geológicas e mecânicas obtidas de vários furos de sondagem no campo. Ao empregar técnicas geoestatísticas avançadas, particularmente ponderação de distância inversa e krigagem ordinária, desenvolvemos um modelo preditivo que interpola espacialmente os valores de resistência da rocha em toda a área modelada.