Haoran LI’s research while affiliated with Northwestern Polytechnical University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


超声振动对磨粒作用机理
磨粒流光整材料去除机理
内腔流道特征试验件
流场特性示意图
试验件区域划分示意图

+6

Study on ultrasonic-assisted abrasive flow polishing of internal flow channels in additive manufacturing
  • Article
  • Full-text available

December 2024

·

5 Reads

Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University

Weiwei Liu

·

Yizhou WU

·

Haoran LI

·

[...]

·

Zhanshuang Wang

By studying the movement of ultrasonically assisted abrasives, combined with simulation experiments of abrasive flow in internal flow channels, the study on ultrasonic assisted abrasive flow machining of internal flow channels in additive manufacturing is carried out. Simulations were performed on the channels of AlSi10Mg aluminum alloy printed components, yielding the optimal process parameters for abrasive flow machining: a processing pressure of 10 MPa, abrasive particle size of 270 mesh, and abrasive concentration of 60%. By comparing the surface morphology of the combined straight and curved flow channels before and after applying ultrasonically assisted abrasive flow machining, it was evident that the application of ultrasonic assistance yielded superior removal of surface defects on additive manufacturing parts. However, its ability to remove the spheroidization effect in deeper concave areas is limited. The efficiency of abrasive flow machining and the surface quality of the parts were enhanced with the incorporation of ultrasonic vibration. Under the optimal polishing process parameter combination of an ultrasonic frequency of 20 kHz, a tool head amplitude of 30 μm, and a processing time of 360 s, the surface roughness (Ra) of the straight section reduced to 0.165 5 μm, while the surface roughness (Ra) of the curved section reduced to 0.371 8 μm.

Download