February 2025
·
13 Reads
The shape of particles is a critical determinant that significantly influences the accuracy of discrete element simulations. To reduce the discrepancies between the discrete element model of wheat seeds and the actual particle shapes, and to enhance the accuracy of Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) coupling simulations in gas–solid two-phase flow studies, We employed laser scanning and inverse modeling techniques to develop a three-dimensional (3D) reconstruction of the wheat seed. Subsequently, we employed Rocky DEM simulation software to develop a polyhedron model and an Angle of Repose (AOR) test model. The interval range of material parameters was determined through a series of physical experiments and subsequently employed to delineate the high and low levels of parameters for the simulation tests. The simulation parameters were calibrated using data from AOR simulation tests. The Plackett–Burman test, Steepest-Ascent test, and Box–Behnken test were conducted sequentially to determine the optimal parameter configuration. A test bench for wheat gas-assisted seeding was constructed, and a semi-resolved CFD-DEM coupling simulation model was developed to perform comparative analysis. The results demonstrated that the optimal parameters were as follows: the static friction coefficient of wheat seed was 0.15, the dynamic friction coefficient of wheat seed was 0.11694, and the dynamic friction coefficient between wheat seed and resin was 0.0797. In this scenario, the relative error of AOR was 2.3% and the maximum relative error of ejection velocity observed was 4.1%. The reliability of the polyhedron model and its calibration parameters was rigorously validated, thereby providing a robust reference for studies on gas–solid two-phase flows.