February 2025
·
21 Reads
Jump rope is a widely applied basic training technique in various sports, yet it is understudied biomechanically. This study investigates the impact of cycle-tempo-induced motor control changes in elite jump rope athletes, addressing the biomechanical gap of cyclic skill control. The hypothesis posited two accelerations per jump cycle—one in front of and one behind the body—and anticipated that increased cycle frequency would alter the distribution of acceleration time within a cycle. Using 3D motion capture technology, 12 young elite jump rope athletes were analyzed at 100, 140, and 180 revolutions per minute (rpm). The kinematic parameters obtained confirmed the presence of two distinct accelerations per cycle. As tempo increased, the percentage of rear acceleration time increased from 9.58% at 100 rpm to 17.42% at 180 rpm, while front acceleration time decreased from 39.03% at 100 rpm to 31.40% at 180 rpm, along with peak velocities increasing from 12.94 m/s at 100 rpm to 22.74 m/s at 180 rpm significantly (p < 0.01). Rope trajectory analysis indicated a consistent movement pattern across tempos, primarily in the sagittal plane. Variations in skill control revealed shorter contact phases, decreasing from 61.53% at 100 rpm to 48.25% at 180 rpm, as well as a reduced vertical range of motion for the center of gravity (from 0.15 body height at 100 rpm to 0.06 body height at 180 rpm) and feet (from 0.05 body height at 100 rpm to 0.03 body height at 180 rpm) (p < 0.05). Significant reductions were also observed in the flexion/extension range of motion for the hip (from 22.31° at 100 rpm to 3.47° at 180 rpm), knee (from 49.31° at 100 rpm to 9.35° at 180 rpm), and ankle (from 52.99° at 100 rpm to 21.41° at 180 rpm) (p < 0.01). These findings enhance the understanding of motor control adaptations to different tempos and have practical implications for developing coaching programs aimed at optimizing performance, stability, and efficiency in jump rope training.