December 2024
·
12 Reads
American Journal of Theoretical and Applied Statistics
In the rapidly evolving economic landscape of Ghana, understanding the intricate interdependencies between macroeconomic variables is pivotal for informed policymaking and strategic economic planning. The study employed network analysis to enhance our comprehension of Ghana's macroeconomic dynamics. Data was sourced from the world development indicators. Initially, a statistical network was constructed to represent the interconnections between Ghana's principal macroeconomic variables using partial correlation matrix, offering a visual and analytical perspective of their relationships. Subsequently, centrality measures and other network analysis tools were utilized to identify and quantify the influence of key economic indicators within this network. Results showed that Exports, Inflation, Exchange rate, Gross Domestic Saving, Manufacturing and Gross National Expenditure played a significant role in the network. However, Agriculture and Imports were identified as most influential variables with high centrality scores across all centrality measures. Finally, Exponential Random Graph Model was employed to provide a comparative baseline, shedding light on the uniqueness or randomness of the observed interrelationships. The significant parameters in the model include the presence of edges between nodes and the presence of generalized geodesic triads (gwesp), which capture the tendency for nodes to form connections based on common neighbors. The findings also revealed that there is a probability of 16.19% for a relationship to exist between two macroeconomic variables if they are both connected to the same third variable.