Gala Ortiz’s research while affiliated with National University of La Plata and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (6)


Figura 1. Principales noxas que pueden afectar la conservación de numerosas especies de aves rapaces diurnas y nocturnas. A) Cóndor Andino (Vultur gryphus), B) Caburé Grande (Glaucidium nana), C) Gavilán Ceniciento (Circus cinereus), D) Halconcito Colorado (Falco sparverius). Fotos F. Vital.
Figura 2. Situaciones y lugares donde la utilización de los RA es frecuente.
Figura 7. A) hemorragia intratorácica, bronquial y pulmonar en Lechuza de Campanario, B) hipema (hemorragia en la cámara anterior del globo ocular) en un Ñacurutú (Bubo virginianus), C) hemorragia aguda subcutánea severa en un Ñacurutú, D) epistaxis (sangrado por las narinas) en un Águila Calva (Haliaetus leucocephalus), E) hematoma subcutáneo en Lechuza Barrada (Strix varia), F) hemorragias intracraneal y cerebral en Lechuza de Campanario. Fotos: G. Ortiz (A y F), M. D. Saggese (B y D), C. Cummings-A Place Called Hope https://www.aplacecalledhoperaptors. com/) (C y E).
Punto de Vista RODENTICIDAS ANTICOAGULANTES: UNA AMENAZA IGNORADA PARA LAS AVES RAPACES DE ARGENTINA Y OTROS PAÍSES DE SUDAMÉRICA - Anticoagulant rodenticides: an ignored threat to birds of prey in Argentina and other South American countries
  • Article
  • Full-text available

September 2024

·

160 Reads

El Hornero

·

·

Gala Ortiz

·

[...]

·

Rafael Mateo

RESUMEN: En Argentina, el riesgo que los rodenticidas anticoagulantes podrían presentar para las aves ra-paces locales fue reconocido inicialmente en la década de 1980. Lamentablemente, 40 años después de esta primera señal de alarma, los rodenticidas anticoagulantes siguen siendo ampliamente utilizados en el país y en toda Sudamérica, sin haberse estudiado el problema medioambiental que estos pueden suponer. Aquí pre-sentamos una revisión práctica e integral sobre los rodenticidas anticoagulantes y la intoxicación por estos en aves rapaces. Discutimos su impacto, tanto sobre individuos como en poblaciones, como también los aspectos relacionados al manejo de animales intoxicados y a la necesidad de contar con capacidad diagnóstica en la región. La información aquí recopilada permitirá contar con contenidos relevantes, actualizados y accesibles necesarios para abordar el estudio de esta amenaza para la conservación de las aves rapaces de Argentina y de otros países de Sudamérica. Al mismo tiempo, esperamos que promueva investigaciones sobre el tema que per-mitan dar los pasos necesarios para evaluar y mitigar el riesgo que el uso de los rodenticidas anticoagulantes puede tener sobre las aves rapaces y otra fauna silvestre. ABSTRACT: In Argentina, the risk that anticoagulant rodenticides could pose to local birds of prey was initially recognized in the 1980s. Unfortunately, 40 years after this first warning sign, anticoagulant rodenticides are still widely used in the country and throughout South America, without having studied the environmental problem that these products may cause. Here we present a practical and comprehensive review on anticoagulant rodenticides and their poisoning in birds of prey. We discuss their impact, both on individuals and their populations , the main aspects related to the management of intoxicated animals, and the need for diagnostic capacity in the region. The information collected here provides relevant, up-to-date, and accessible content necessary to address the study of this threat to the conservation of birds of prey in Argentina and other South American countries.

Download

Figura 1. Principales noxas que pueden afectar la conservación de numerosas especies de aves rapaces diurnas y nocturnas. A) Cóndor Andino (Vultur gryphus), B) Caburé Grande (Glaucidium nana), C) Gavilán Ceniciento (Circus cinereus), D) Halconcito Colorado (Falco sparverius). Fotos F. Vital.
Figura 2. Situaciones y lugares donde la utilización de los RA es frecuente.
Figura 7. A) hemorragia intratorácica, bronquial y pulmonar en Lechuza de Campanario, B) hipema (hemorragia en la cámara anterior del globo ocular) en un Ñacurutú (Bubo virginianus), C) hemorragia aguda subcutánea severa en un Ñacurutú, D) epistaxis (sangrado por las narinas) en un Águila Calva (Haliaetus leucocephalus), E) hematoma subcutáneo en Lechuza Barrada (Strix varia), F) hemorragias intracraneal y cerebral en Lechuza de Campanario. Fotos: G. Ortiz (A y F), M. D. Saggese (B y D), C. Cummings-A Place Called Hope https://www.aplacecalledhoperaptors. com/) (C y E).
Punto de Vista Anticoagulant rodenticides: an ignored threat to birds of prey in Argentina and other South American countries RODENTICIDAS ANTICOAGULANTES: UNA AMENAZA IGNORADA PARA LAS AVES RAPACES DE ARGENTINA Y OTROS PAÍSES DE SUDAMÉRICA Recibido: 12 de marzo 2024 · Aceptado: 12 de junio 2024

August 2024

·

574 Reads

El Hornero

En Argentina, el riesgo que los rodenticidas anticoagulantes podrían presentar para las aves rapaces locales fue reconocido inicialmente en la década de 1980. Lamentablemente, 40 años después de esta primera señal de alarma, los rodenticidas anticoagulantes siguen siendo ampliamente utilizados en el país y en toda Sudamérica, sin haberse estudiado el problema medioambiental que estos pueden suponer. Aquí presentamos una revisión práctica e integral sobre los rodenticidas anticoagulantes y la intoxicación por estos en aves rapaces. Discutimos su impacto, tanto sobre individuos como en sus poblaciones, como también los aspectos relacionados al manejo de animales intoxicados y a la necesidad de contar con capacidad diagnóstica en la región. La información aquí recopilada permitirá contar con contenidos relevantes, actualizados y accesibles necesarios para abordar el estudio de esta amenaza para la conservación de las aves rapaces de Argentina y de otros países de Sudamérica. Al mismo tiempo, esperamos que promueva investigaciones sobre el tema que permitan dar los pasos necesarios para evaluar y mitigar el riesgo que el uso de los rodenticidas anticoagulantes puede tener sobre las aves rapaces y otra fauna silvestre


Test Patagonia’s raptors for rodenticides

September 2022

·

78 Reads

·

6 Citations

Science

Thousands of owls and other predators die each year globally after eating rodents that have been poisoned with anticoagulant rodenticides (ARs) (1–3). In Andean Patagonia, where wilderness areas coexist with human settlements (including tourist destinations), ARs are unregulated and routinely used to prevent human contact with rodents (4, 5). This strategy puts raptors in the region at risk and may be the cause of mass mortality events. However, because testing for ARs is difficult, the extent of ARs’ effects on raptors and other wildlife remains unknown. Given their potential for harm, it is crucial to test for ARs, especially when raptor mass mortality events occur, and to enact policies that regulate their use. In Patagonia’s forests, the periodic mast seeding of bamboos triggers rapid increases in rodent populations, and owls and other predators are drawn to the affected areas due to increased prey (6, 7). Because the rodents are hosts of the zoonotic ANDV (Sur), a hantavirus lethal for humans (7), local inhabitants fear that the surge in rodents will increase hantavirus transmission. In response, people buy and use massive amounts of ARs without the supervision of any governmental or scientific authorities. At the peak of these rodent influxes, umerous dead owls and other raptors are commonly recorded (7). The cause of massive owl mortality events in Patagonia is unknown, but secondary poisoning by ARs is one likely explanation given their effects on wildlife elsewhere (1–3). Despite the possible harm caused by ARs, toxicology laboratories in Argentina do not test for them, and restrictions due to sanitation concerns prevent the exportation of fresh tissue samples to overseas toxicology labs (2). Without a way to identify ARs locally or through international collaboration, no relevant data can be collected to determine whether they are the cause of death. We urge Argentine and other South American wildlife and health authorities, and the scientific community, to strengthen local capacities to test for ARs. Evidence from both veterinary and human medicine indicates that this problem affects other nontarget subjects in addition to predators, with the same analytical limitations (5, 8). Protecting environmental, wildlife, and human health in the region requires surveillance and wellenforced regulations of AR use. REFERENCES AND NOTES 1. S. M. M. Nakayama et al., J. Vet. Med. Sci. 81, 298 (2019). 2. E. A. Gomez, S. Hindmarch, J. A. Smith, J. Rap. Res. 56, (2022). 3. J. E. Elliott et al., BioScience 66, 401 (2016). 4. “Listado de Insecticidas y Raticidas,” Administración Nacional de Medicamentos, Alimentos, y Tecnología Médica (2021); www.argentina.gob.ar/sites/default/files/anmat_listado_de_insecticidas_y_raticidas_actualizado_al_20-9-21.pdf. 5. A. I. Gallardo Ferrada et al., Acta Tox. Argentina 23,44 (2015). 6. V. Ojeda, L. Chazarreta, Aust. Ecol. 43, 719 (2018). 7. R. D. Sage et al., in The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. Pearson, D. A. Kelt et al., Eds. (University of California, Berkeley, CA, 2007), pp. 177–224. 8. M. F. Lugo, Acta Tox. Argentina 27, 60 (2019).


Fig. 1. Parasitic infections at joints of a necropsied Magellanic woodpecker (Campephilus magellanicus) adult female from Argentine Patagonia: (A) Dissected distocranial extremity of the left tibiotarsus. (B) Urogygial gland area increased in size. Arrows show roundworms present in the tissues extracted from the affected locations.
Fig. 2. Scanning electron micrograph (SEM) of female Hamatospiculum flagellispiculosum: (A) Detail of epaulette in anterior end (frontal view): a: amphid, b: cephalic papilla in inner circle, c: cephalic papilla in outer circle, d: tooth. (B) Anterior end with vulva (ventral view), Bar = 100 μm. (C) Anterior end (lateral view), Bar = 20 μm. (D) Detail of anal region (caudal view) with atrophied anus, Bar = 200 μm.
Fig. 3. Schematic outline of the tail of male Hamatospiculum flagellispiculosum.
Fig. 4. Optical microscope micrograph of histopathological assessment of muscular tissues dissected from articulations affected by a parasitic infection in Campephilus magellanicus: (A) Sample from the right knee exhibiting loss of the skeletal muscle architecture and nematode eggs (dark dots at lower half), contiguous to muscle fibers with normal tissue architecture (upper half), Bar = 200 μm. (B) Sample from the left tibiotarsus mass showing myofibers of variable shape and size, diffuse mononuclear infiltration, and several eggs, Bar = 100 μm. (C) Two thin-shelled eggs with fully differentiated L1 at the centre of the image, surrounded by mononuclear cells, Bar = 20 μm.
Fig. 5. Hamatospiculum flagellispiculosum, optical microscope micrograph of eggs: (A) Egg with first-stage larvae (L1), Bar = 15 μm. (B) Larvae hatching, Bar = 15 μm.
Hamatospiculum flagellispiculosum (Nematoda: Diplotriaenidae) causing severe disease in a new host from Argentine Patagonia: Campephilus magellanicus (Aves: Picidae)

February 2019

·

247 Reads

·

1 Citation

International Journal for Parasitology Parasites and Wildlife

We describe pathological aspects of an infection caused by parasitic nematodes in skeletal muscles of a Magellanic woodpecker (Campephilus magellanicus), providing the first description of any disease findings in this species. A weakened female with locomotory dysfunction was rescued near Bariloche city (Argentine Patagonia), which soon died. At the necropsy, unexpected masses of tissue were located at three joints (legs and tail). A dissection of these masses exposed numerous nematodes in the musculature surrounding the joints that were identified as Hamatospiculum flagellispiculosum (Nematoda: Diplotriaenidae), a species that was not previously found in Piciformes (woodpeckers, toucans, and allies) of the Neotropical Region. In this report, we complement the original parasite description from 1952 with SEM images, and extend the species range about 2000 km southwards. Histopathological analysis (tissues sectioned 4–6 microns, stained with hematoxylin and eosin) of the affected tissues revealed parasitic myositis with muscle fibrosis. Severe muscle degeneration and necrosis, fibrous tissue replacing muscle tissue, chronic inflammation with widespread diffuse mononuclear infiltration, and parasitic content (adult roundworms, eggs, and eggs with first-stage larvae) were present in all samples. The multifocal nature of these lesions was consistent with the locomotory dysfunction exhibited by the bird. Both the immune response (mononuclear infiltration without eosinophils, which normally fight helminth colonization) and the clinical severity of this case (a lethal, multifocal macroparasite infection) are noteworthy. The expected immune response may have been suppressed through immunomodulation by the parasite, as observed for filarial parasites. Based on their demography and life history traits (i.e., long-lived picids that produce a single nestling every 1–2 years, and live in sparse populations), Magellanic Woodpeckers do not seem to be obvious hosts of an obligately killing parasite, and other (more regular) hosts should be expected to occur in the same region.


Fig. 1. Parasitic infections at joints of a necropsied Magellanic woodpecker (Campephilus magellanicus) adult female from Argentine Patagonia: (A) Dissected distocranial extremity of the left tibiotarsus. (B) Urogygial gland area increased in size. Arrows show roundworms present in the tissues extracted from the affected locations.
Fig. 2. Scanning electron micrograph (SEM) of female Hamatospiculum flagellispiculosum: (A) Detail of epaulette in anterior end (frontal view): a: amphid, b: cephalic papilla in inner circle, c: cephalic papilla in outer circle, d: tooth. (B) Anterior end with vulva (ventral view), Bar = 100 μm. (C) Anterior end (lateral view), Bar = 20 μm. (D) Detail of anal region (caudal view) with atrophied anus, Bar = 200 μm.
Fig. 3. Schematic outline of the tail of male Hamatospiculum flagellispiculosum.
Fig. 4. Optical microscope micrograph of histopathological assessment of muscular tissues dissected from articulations affected by a parasitic infection in Campephilus magellanicus: (A) Sample from the right knee exhibiting loss of the skeletal muscle architecture and nematode eggs (dark dots at lower half), contiguous to muscle fibers with normal tissue architecture (upper half), Bar = 200 μm. (B) Sample from the left tibiotarsus mass showing myofibers of variable shape and size, diffuse mononuclear infiltration, and several eggs, Bar = 100 μm. (C) Two thin-shelled eggs with fully differentiated L1 at the centre of the image, surrounded by mononuclear cells, Bar = 20 μm.
Fig. 5. Hamatospiculum flagellispiculosum, optical microscope micrograph of eggs: (A) Egg with first-stage larvae (L1), Bar = 15 μm. (B) Larvae hatching, Bar = 15 μm.
Severe muscular injuries caused by parasitic disease in a large Campephilus woodpecker from Argentine Patagonia

December 2018

·

64 Reads

·

1 Citation

International Journal for Parasitology Parasites and Wildlife

We describe pathological aspects of an infection caused by parasitic nematodes in skeletal muscles of a Magellanic woodpecker (Campephilus magellanicus), providing the first description of any disease findings in this species. A weakened female with locomotory dysfunction was rescued near Bariloche city (Argentine Patagonia), which soon died. At the necropsy, unexpected masses of tissue were located at three joints (legs and tail). A dissection of these masses exposed numerous nematodes in the musculature surrounding the joints that were identified as Hamatospiculum flagellispiculosum (Nematoda: Diplotriaenidae), a species that was not previously found in Piciformes (woodpeckers, toucans, and allies) of the Neotropical Region. In this report, we complement the original parasite description from 1952 with SEM images, and extend the species range about 2000 km southwards. Histopathological analysis (tissues sectioned 4–6 microns, stained with hematoxylin and eosin) of the affected tissues revealed parasitic myositis with muscle fibrosis. Severe muscle degeneration and necrosis, fibrous tissue replacing muscle tissue, chronic inflammation with widespread diffuse mononuclear infiltration, and parasitic content (adult roundworms, eggs, and eggs with first-stage larvae) were present in all samples. The multifocal nature of these lesions was consistent with the locomotory dysfunction exhibited by the bird. Both the immune response (mononuclear infiltration without eosinophils, which normally fight helminth colonization) and the clinical severity of this case (a lethal, multifocal macroparasite infection) are noteworthy. The expected immune response may have been suppressed through immunomodulation by the parasite, as observed for filarial parasites. Based on their demography and life history traits (i.e., long-lived picids that produce a single nestling every 1–2 years, and live in sparse populations), Magellanic Woodpeckers do not seem to be obvious hosts of an obligately killing parasite, and other (more regular) hosts should be expected to occur in the same region.


Figura 1. Ubicación de los registros de Aglaoctenus puyen Piacentini en Chile. A) Mapa general; monte Tronador, límite entre Chile y Argentina (oculto tras el balón blanco), circundado por los parques nacionales Vicente Pérez Rosales al oeste (Chile, Región de Los Lagos) y Nahuel Huapi al este (Argentina, Provincia de Río Negro). B) Vista desde Chile hacia la frontera con Argentina, en la zona sur del monte Tronador. El recorrido efectuado entre Pampa Linda (Argentina) y el Viejo Tronador (cercano al casquete glaciar del cerro) se muestra en verde; la línea amarilla es el límite internacional. Se indican los puntos de registro de la hembra (H) y del macho (M), en el escarpado faldeo occidental del cerro. C) Paisaje de alta montaña donde se encontraron los ejemplares. Foto: DHM. 
Presencia del género Aglaoctenus Tullgren (Araneae: Lycosidae) en Chile

July 2018

·

450 Reads

REVISTA CHILENA DE ENTOMOLOGÍA

Resumen. Aglaoctenus Tullgren, 1905 es un género de arañas sudamericanas perteneciente a la familia Lycosidae, del cual se conocen cinco especies. Se reporta por primera vez su presencia en Chile, donde en febrero de 2018 se registraron ejemplares de la especie Aglaoctenus puyen Piacentini, 2011 en un ambiente altoandino. Se observaron y fotografiaron un macho y una hembra cargando sus crías en el abdomen, en un faldeo occidental del cerro Tronador, dentro del Parque Nacional Vicente Pérez Rosales, en la Región de Los Lagos. Se aportan datos y fotos que revelan hábitos de esta especie recientemente descrita y poco conocida. Estos hallazgos resaltan la necesidad de realizar relevamientos en otras localidades al este y al oeste de los Andes, en busca de esta especie. Palabras clave: Aglaoctenus puyen, ambiente altoandino, araña lobo, cuidado de crías, Región de Los Lagos. Abstract. Aglaoctenus Tullgren, 1905 is a genus of South American spiders that belong to the Lycosidae family, of which five species are known. We report by the first time its presence in Chile, based on specimens of Aglaoctenus puyen Piacentini, 2011 that were observed in highlands of the Andes, in February 2018. A male, and a female carrying spiderlings on her abdomen, were recorded and photographed in a West slope of Tronador mount, at Vicente Pérez Rosales National Park, in Los Lagos Region. We present data and pictures that reveal undocumented habits of this recently described species. These findings highlight the need of exploration efforts in other localities East and West of the Andean Range.

Citations (1)


... An indepth analysis of modern agricultural practices reveals further negative interactions and outcomes. This includes direct persecution due to real and/or perceived conflicts with crops and livestock (Grande et al. 2018), as well as intentional and/or accidental exposure to toxicants, such as pesticides (Goldstein et al. 1999), anticoagulant rodenticides (Hughes et al. 2013, Saggese et al. 2022, and strychnine (García Brea et al. 2010). Furthermore, raptors can coexist with backyard and commercial poultry, livestock, and humans, increasing the risk of inter-species pathogen transmission (Vidal et al. 2017, Shearn-Bochsler et al. 2019, including antibiotic-resistant bacteria (Molina-López et al. 2011, Vidal et al. 2017) and emerging pathogens (Movalli et al. 2018, Oakley et al. 2021. ...

Reference:

Health Assessment of Three Species of Free-Living Raptors Inhabiting a Pampas Agroecosystem in Central Argentina
Test Patagonia’s raptors for rodenticides
  • Citing Article
  • September 2022

Science