May 2012
·
406 Reads
·
235 Citations
Statistics and Computing
This paper discusses a novel strategy for simulating rare events and an associated Monte Carlo estimation of tail probabilities. Our method uses a system of interacting particles and exploits a Feynman-Kac representation of that system to analyze their fluctuations. Our precise analysis of the variance of a standard multilevel splitting algorithm reveals an opportunity for improvement. This leads to a novel method that relies on adaptive levels and produces, in the limit of an idealized version of the algorithm, estimates with optimal variance. The motivation for this theoretical work comes from problems occurring in watermarking and fingerprinting of digital contents, which represents a new field of applications of rare event simulation techniques. Some numerical results show performance close to the idealized version of our technique for these practical applications. KeywordsRare event–Sequential importance sampling–Feynman-Kac formula–Metropolis-Hastings–Fingerprinting–Watermarking