July 2024
·
18 Reads
We develop a heuristic for the density of integer points on affine cubic surfaces. Our heuristic applies to smooth surfaces defined by cubic polynomials that are log K3, but it can also be adjusted to handle singular cubic surfaces. We compare our heuristic to Heath-Brown's prediction for sums of three cubes, as well as to asymptotic formulae in the literature around Zagier's work on the Markoff cubic surface, and work of Baragar and Umeda on further surfaces of Markoff-type. We also test our heuristic against numerical data for several families of cubic surfaces.