Ferenc Reinhardt's research while affiliated with Massachusetts Institute of Technology and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (93)
Detecting early cancer through liquid biopsy is challenging due to the lack of specific biomarkers for early lesions and potentially low levels of these markers. The current study systematically develops an extracellular‐vesicle (EV)‐based test for early detection, specifically focusing on high‐grade serous ovarian carcinoma (HGSOC). The marker sel...
Ovarian cancer is a heterogeneous group of tumors in both cell type and natural history. While outcomes are generally favorable when detected early, the most common subtype, high-grade serous carcinoma (HGSOC), typically presents at an advanced stage and portends less favorable prognoses. Its aggressive nature has thwarted early detection efforts t...
Ovarian cancer is especially deadly, challenging to treat, and has proven refractory to known immunotherapies. Cytokine therapy is an attractive strategy to drive a proinflammatory immune response in immunologically cold tumors such as many high grade ovarian cancers; however, this strategy has been limited in the past due to severe toxicity. We pr...
Cancer stem cells (CSCs) may serve as the cellular seeds of tumor recurrence and metastasis, and they can be generated via epithelial-mesenchymal transitions (EMTs). Isolating pure populations of CSCs is difficult because EMT programs generate multiple alternative cell states, and phenotypic plasticity permits frequent interconversions between thes...
Epithelial–mesenchymal transition (EMT) programs operate within carcinoma cells, where they generate phenotypes associated with malignant progression. In their various manifestations, EMT programs enable epithelial cells to enter into a series of intermediate states arrayed along the E–M phenotypic spectrum. At present, we lack a coherent understan...
The epithelial-to-mesenchymal transition (EMT), which conveys epithelial (E) carcinoma cells to quasi-mesenchymal (qM) states, enables these cells to gain tumor-initiating stem like abilities, metastasize and acquire resistance to several drug and chemotherapeutic regimens. In addition to these aforementioned features, we have recently demonstrated...
The epithelial-to-mesenchymal transition, which conveys epithelial (E) carcinoma cells to quasi-mesenchymal (qM) states, enables them to metastasize and acquire resistance to certain treatments. Murine tumors composed of qM mammary carcinoma cells assemble an immunosuppressive tumor microenvironment (TME) and develop resistance to anti-CTLA4 immune...
The epithelial-mesenchymal transition (EMT) is a key cell-biological program enabling carcinoma cell phenotypic plasticity. Accumulating evidence suggests EMT programs do not operate as a stereotypical program that functions as a binary switch, shifting cells from an epithelial (E) to a mesenchymal (M) state. Instead, EMT programs generate cells th...
Despite advances in immuno-oncology, the relationship between tumor genotypes and response to immunotherapy remains poorly understood, particularly in high-grade serous tubo-ovarian carcinomas (HGSC). We developed a series of mouse models that carry genotypes of human HGSCs and grow in syngeneic immunocompetent hosts to address this gap. We transfo...
Background
Immune checkpoint blockade (ICB) has generated some dramatic responses in certain types of human tumors, most notably, melanomas. However, the response of breast tumors has been largely limited. We have previously demonstrated that the residence of breast cancer cells in the epithelial or mesenchymal phenotypic states can itself be used...
Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers¹. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions2–5. However, precisely how sus...
p>Immunotherapy in ovarian cancer has been disappointing, with only ~10% of patients responding to checkpoint blockade. The determinants of this low response rate remain poorly understood and there is a pressing need for immune-competent preclinical models to elucidate the biology of immune evasion in ovarian cancer. One critical area of interest i...
The epithelial-to-mesenchymal transition (EMT) is a cell-biologic program that confers mesenchymal traits on carcinoma cells and drives their metastatic dissemination. We recently demonstrated that epithelial and mesenchymal carcinomas recruit distinct immune cells to their tumor microenvironments (TME) and differ in their susceptibility to checkpo...
Immunotherapy in ovarian cancer has been disappointing, with only ~10% of patients responding to checkpoint blockade. The determinants of this low response rate remain poorly understood, and there is a pressing need for immune-competent preclinical models to elucidate the biology of immune evasion in ovarian cancer. One critical area of interest is...
Cancer stem cells (CSCs) are key drivers of cancer metastasis, drug resistance, and disease recurrence. While the transcriptional regulatory circuitry that underlies the generation and propagation of the breast CSC state is not completely understood, defining the core regulators of the CSC state has the potential to reveal how these cells arise and...
High-grade serous ovarian cancer (HGSOC) is the most frequent and most aggressive histologic subtype of ovarian cancer. The cornerstone of the existing treatment of HGSOC is DNA-damaging chemotherapy; however, practically all patients eventually develop a progressive disease and the 5-year survival is only 40%. Immunotherapy would seem to be an att...
Systemic dissemination of tumor cells often begins long before the development of overt metastases, revealing the inefficient nature of the metastatic process. Thus, already at the time of initial clinical presentation, many patients with cancer harbor a myriad disseminated tumor cells (DTC) throughout the body, most of which are found as mitotical...
Carcinoma cells residing in an intermediate phenotypic state along the epithelial–mesenchymal (E–M) spectrum are associated with malignant phenotypes, such as invasiveness, tumor-initiating ability, and metastatic dissemination. Using the recently described CD104⁺/CD44hi antigen marker combination, we isolated highly tumorigenic breast cancer cells...
Lack of insight into mechanisms governing breast cancer metastasis has precluded the development of curative therapies. Metastasis-initiating cancer cells (MICs) are uniquely equipped to establish metastases, causing recurrence and therapeutic resistance. Using various metastasis models, we discovered that certain primary tumours elicit a systemic...
The epithelial-mesenchymal transition (EMT) endows carcinoma cells with traits needed to complete many of the steps leading to metastasis formation, but its contributions specifically to the late step of extravasation remain understudied. We find that breast cancer cells that have undergone an EMT extravasate more efficiently from blood vessels bot...
Patients undergoing surgical resection of primary breast tumors confront a risk for metastatic recurrence that peaks sharply 12 to 18 months after surgery. The cause of early metastatic relapse in breast cancer has long been debated, with many ascribing these relapses to the natural progression of the disease. Others have proposed that some aspect...
PERK signaling is required for cancer invasion and there is interest in targeting this pathway for therapy. Unfortunately, chemical inhibitors of PERK’s kinase activity cause on-target side effects that have precluded their further development. One strategy for resolving this difficulty would be to target downstream components of the pathway that s...
The Epithelial-to-mesenchymal transition (EMT) is a cell-biological program that confers mesenchymal traits on carcinoma cells and drives their metastatic dissemination. It is, unclear, however, whether activation of EMT in carcinoma cells can change their susceptibility to immune attack. We demonstrate here that mammary tumor cells arising from mo...
Significance
More than half of ductal carcinoma in situ (DCIS) lesions will never progress to invasive breast cancers. However, the factors that drive invasion are not well understood. Our findings establish SMARCE1 as a clinically relevant factor that promotes the invasive progression of early-stage breast cancers. SMARCE1 drives invasion by servi...
Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as...
Significance
It is widely appreciated that carcinoma cells exhibiting certain mesenchymal traits are enriched for cancer stem cells (CSCs) and can give rise to tumors with aggressive features. Whereas it has been proposed that mesenchymal carcinoma cell populations are internally heterogeneous, the field has made little progress in resolving the sp...
The emergence of metastatic disease in cancer patients many years or decades after initial successful treatment of primary tumors is well documented but poorly understood at the molecular level. Recent studies have begun exploring the cell-intrinsic programs causing disseminated tumor cells to enter latency and the cellular signals in the surroundi...
The causes for breast cancer recurrence in the form of metastatic disease and the reasons why less than 1% of disseminated tumor cells form metastases are unknown. A number of studies have demonstrated that the aggressive cancer cell population capable of driving metastasis feature properties of the epithelial-mesenchymal transition (EMT) and tumor...
Unlabelled:
Immune cells promote the initial metastatic dissemination of carcinoma cells from primary tumors. In contrast to their well-studied functions in the initial stages of metastasis, the specific roles of immunocytes in facilitating progression through the critical later steps of the invasion-metastasis cascade remain poorly understood. He...
Targeted inhibitors of oncogenic Ras (rat sarcoma viral oncogene)-Raf signaling have shown great promise in the clinic, but resistance remains a major challenge: 30% of tumors with pathway mutations do not respond to targeted inhibitors, and of the 70% that do respond, all eventually develop resistance. Before cancer cells acquire resistance, they...
Have cancer stem cells MET their match?
Solid tumors have been hypothesized to contain a subset of highly aggressive cells that fuel tumor growth and metastasis. The search is on for drugs that selectively kill or diminish the malignant properties of these tumor-initiating cells (TICs; previously called “cancer stem cells”). Pattabiraman et al. hyp...
Tumour-initiating cells (TICs) are responsible for metastatic dissemination and clinical relapse in a variety of cancers. Analogies between TICs and normal tissue stem cells have led to the proposal that activation of the normal stem-cell program within a tissue serves as the major mechanism for generating TICs. Supporting this notion, we and other...
Tumor recurrence and metastasis underlie the majority of cancer-related deaths. Cancer cells that recur or metastasize are often both de-differentiated and multidrug resistant, but the mechanistic basis for this has been poorly understood. We have recently shown that de-differentiation promotes multidrug resistance by activating Nrf2, which stimula...
Thirty-Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium; December 9-13, 2014; San Antonio, TX
Epithelial-to-mesenchymal transition (EMT) plays an important role in cancer progression. By undergoing an EMT, cancer cells acquire a spectrum of malignant properties, including invasiveness, multi-drug resistance and stem-like traits. Althou...
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they...
The cell-biological program termed the epithelial-mesenchymal transition (EMT) confers on cancer cells mesenchymal traits and an ability to enter the cancer stem cell (CSC) state. However, the interactions between CSCs and their surrounding microenvironment are poorly understood. Here we show that tumour-associated monocytes and macrophages (TAMs)...
Malignant carcinomas that recur following therapy are typically de-differentiated and multidrug resistant (MDR). De-differentiated cancer cells acquire MDR by up-regulating reactive oxygen species (ROS)-scavenging enzymes and drug efflux pumps, but how these genes are up-regulated in response to de-differentiation is not known. Here, we examine thi...
It is increasingly appreciated that oncogenic transformation alters cellular metabolism to facilitate cell proliferation, but less is known about the metabolic changes that promote cancer cell aggressiveness. Here, we analyzed metabolic gene expression in cancer cell lines and found that a set of high-grade carcinoma lines expressing mesenchymal ma...
The epithelial-mesenchymal transition (EMT), a pleiotropic cellular program, has been associated with the acquisition of metastatic ability, self-renewal traits and resistance to chemotherapeutic drugs in breast cancer and other carcinomas. During normal development and tumor progression, this change in cell phenotype is induced by contextual signa...
Breast cancer stem-like cells (BCSC) have been implicated in tumor growth, metastasis, drug resistance and relapse but druggable targets in appropriate subsets of this cell population have yet to be identified. Here we identify a fundamental role for the prolyl isomerase Pin1 in driving BCSC expansion, invasiveness and tumorigenicity, defining it a...
Unlabelled:
Epithelial-to-mesenchymal transition (EMT) promotes both tumor progression and drug resistance, yet few vulnerabilities of this state have been identified. Using selective small molecules as cellular probes, we show that induction of EMT greatly sensitizes cells to agents that perturb endoplasmic reticulum (ER) function. This sensitivi...
The potential role of the cell-of-origin in determining the tumor phenotype has been raised, but not adequately examined. We hypothesized that distinct cells-of-origin may play a role in determining ovarian tumor phenotype and outcome. Here we describe a new cell culture medium for in vitro culture of paired normal human ovarian (OV) and fallopian...
The epithelial-mesenchymal transition program becomes activated during malignant progression and can enrich for cancer stem cells (CSCs). We report that inhibition of protein kinase C α (PKCα) specifically targets CSCs but has little effect on non-CSCs. The formation of CSCs from non-stem cells involves a shift from EGFR to PDGFR signaling and resu...
The occurrence of metastasis and the persistence of chemotherapy-resistant carcinoma cells are the two leading factors that contribute to cancer-related deaths. Both these properties of tumors have been shown to arise from the epithelial-to-mesenchymal transition (EMT), a process that leads to the generation of cancer stem cells (CSCs). Hence, it i...
The recent discovery that normal and neoplastic epithelial cells re-enter the stem cell state raised the intriguing possibility that the aggressiveness of carcinomas derives not from their existing content of cancer stem cells (CSCs) but from their proclivity to generate new CSCs from non-CSC populations. Here, we demonstrate that non-CSCs of human...
Unlabelled:
Mesenchymal cells of the tumor-associated stroma are critical determinants of carcinoma cell behavior. We focus here on interactions of carcinoma cells with mesenchymal stem cells (MSC), which are recruited to the tumor stroma and, once present, are able to influence the phenotype of the carcinoma cells. We find that carcinoma cell-der...
Unlabelled:
Disseminated cancer cells that have extravasated into the tissue parenchyma must interact productively with its extracellular matrix components to survive, proliferate, and form macroscopic metastases. The biochemical and cell biologic mechanisms enabling this interaction remain poorly understood. We find that the formation of elongate...
Regulatory networks orchestrated by key transcription factors (TFs) have been proposed to play a central role in the determination of stem cell states. However, the master transcriptional regulators of adult stem cells are poorly understood. We have identified two TFs, Slug and Sox9, that act cooperatively to determine the mammary stem cell (MaSC)...
Passage through an epithelial-mesenchymal transition (EMT) is associated with the acquisition of migratory and self-renewal abilities in human mammary epithelial cells (MECs). The signaling mechanisms that induce and then maintain these properties have remained unclear. We describe three signaling pathways, involving Transforming Growth Factor (TGF...
The epithelial-mesenchymal transition (EMT) has been associated with the acquisition of motility, invasiveness, and self-renewal traits. During both normal development and tumor pathogenesis, this change in cell phenotype is induced by contextual signals that epithelial cells receive from their microenvironment. The signals that are responsible for...
Current models of stem cell biology assume that normal and neoplastic stem cells reside at the apices of hierarchies and differentiate into nonstem progeny in a unidirectional manner. Here we identify a subpopulation of basal-like human mammary epithelial cells that departs from that assumption, spontaneously dedifferentiating into stem-like cells....
Distant metastases, rather than the primary tumors from which these lesions arise, are responsible for >90% of carcinoma-associated mortality. Many patients already harbor disseminated tumor cells in their bloodstream, bone marrow, and distant organs when they initially present with cancer. Hence, truly effective anti-metastatic therapeutics must i...
Systemic instigation is a process by which endocrine signals sent from certain tumors (instigators) stimulate BM cells (BMCs), which are mobilized into the circulation and subsequently foster the growth of otherwise indolent carcinoma cells (responders) residing at distant anatomical sites. The identity of the BMCs and their specific contribution o...
Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC
Discussion
Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr LB-194.
miR-31 inhibits breast cancer metastasis via the pleiotropic suppression of a cohort of prometastatic target genes that include integrin alpha(5) (ITGA5), radixin (RDX), and RhoA. We previously showed that the concomitant overexpression of ITGA5, RDX, and RhoA was capable of overriding the antimetastatic effects of ectopically expressed miR-31 in v...
MicroRNAs (miRNAs) are increasingly implicated in the regulation of metastasis. Despite their potential as targets for anti-metastatic therapy, miRNAs have only been silenced in normal tissues of rodents and nonhuman primates. Therefore, the development of effective approaches for sequence-specific inhibition of miRNAs in tumors remains a scientifi...