May 2022
·
108 Reads
·
9 Citations
Time-triggered networks are deployed in avionics and astronautics because they provide deterministic and low-latency communications. Remapping of partitions and the applications that reside in them that are executing on the failed core and the resulting re-routing and re-scheduling are conducted when a permanent end-system core failure occurs and local resources are insufficient. We present a network-wide reconfiguration strategy as well as an implementation scheme, and propose an Integer Linear Programming based joint mapping, routing, and scheduling reconfiguration method (JILP) for global reconfiguration. Based on scheduling compatibility, a novel heuristic algorithm (SCA) for mapping and routing is proposed to reduce the reconfiguration time. Experimentally, JILP achieved a higher success rate compared to mapping-then-routing-and-scheduling algorithms. In addition, relative to JILP, SCA/ILP was 50-fold faster and with a minimal impact on reconfiguration success rate. SCA achieved a higher reconfiguration success rate compared to shortest path routing and load-balanced routing. In addition, scheduling compatibility plays a guiding role in ILP-based optimization objectives and ‘reconfigurable depth’, which is a metric proposed in this paper for the determination of the reconfiguration potential of a TT network.