March 2025
·
5 Reads
Understanding the thermodynamic horizontal structure of the mesopause is essential for studying atmospheric wave dynamics and energy transport. However, conventional models like MSISE-00 exhibit some discrepancies from lidar observations in the mesopause. To obtain a more reliable horizontal temperature structure, this study integrates coordinated lidar observations from Urumqi, Yuzhong, and Yangbajing with models using a three-dimensional variational (3DVAR) data assimilation method to construct a high-resolution temperature field over northwestern China. The assimilated temperature profiles closely match lidar observations, with the RMSE (root mean square error) of residual reductions of 67.35% at Urumqi, 60.69% at Yuzhong, and 34.80% at Yangbajing. Independent validation at Korla showed a RMSE of residual reductions of 40.14%, confirming the model's effectiveness. The thermodynamical horizontal structures of the mesopause obtained from this model were also analyzed. The lidar-based model for the mesopause extends the observation results from disparate lidar stations to the area between lidar stations and will contribute to a deeper understanding of upper atmospheric dynamics.