March 2025
·
3 Reads
Neurocomputing
This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.
March 2025
·
3 Reads
Neurocomputing
November 2024
·
18 Reads
The WCAY (weighted channel attention YOLO) model, which is meticulously crafted to identify fracture features across diverse X-ray image sites, is presented herein. This model integrates novel core operators and an innovative attention mechanism to enhance its efficacy. Initially, leveraging the benefits of dynamic snake convolution (DSConv), which is adept at capturing elongated tubular structural features, we introduce the DSC-C2f module to augment the model’s fracture detection performance by replacing a portion of C2f. Subsequently, we integrate the newly proposed weighted channel attention (WCA) mechanism into the architecture to bolster feature fusion and improve fracture detection across various sites. Comparative experiments were conducted, to evaluate the performances of several attention mechanisms. These enhancement strategies were validated through experimentation on public X-ray image datasets (FracAtlas and GRAZPEDWRI-DX). Multiple experimental comparisons substantiated the model’s efficacy, demonstrating its superior accuracy and real-time detection capabilities. According to the experimental findings, on the FracAtlas dataset, our WCAY model exhibits a notable 8.8% improvement in mean average precision (mAP) over the original model. On the GRAZPEDWRI-DX dataset, the mAP reaches 64.4%, with a detection accuracy of 93.9% for the “fracture” category alone. The proposed model represents a substantial improvement over the original algorithm compared to other state-of-the-art object detection models. The code is publicly available at https://github.com/cccp421/Fracture-Detection-WCAY . Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-77878-6.
April 2024
·
46 Reads
Presented herein is the WCAY (Weighted Channel attention YOLO) model, meticulously crafted to identify fracture features across diverse X-ray image sites. This model integrates novel core operators and an innovative attention mechanism to enhance its efficacy. Initially, leveraging the benefits of DSConv (Dynamic Snake Convolution), adept at capturing elongated tubular structural features, we introduce the DSC-C2f module to augment the model's fracture detection performance by replacing a portion of C2f. Subsequently, we integrate the newly proposed Weighted Channel attention (WCA) mechanism into the architecture to bolster feature fusion and improve fracture detection across various sites. Comparative experiments were conducted, evaluating the performance of several attention mechanisms. These enhancement strategies were validated through experimentation on public X-ray image datasets (FracAtlas and GRAZPEDWRI-DX). Multiple experimental comparisons substantiate the model's efficacy, demonstrating its superior accuracy and real-time detection capabilities. According to the experimental findings, on the FracAtlas dataset, our WCAY model exhibits a notable 8.8% improvement in mean Average Precision (mAP) over the original model. On the GRAZPEDWRI-DX dataset, the mAP reaches 64.4%, with a detection accuracy of 93.9% for the "fracture" category alone. The proposed model represents a substantial advancement over the original algorithm when compared to other state-of-the-art object detection models. The code is publicly available at https://github.com/cccp421/Fracture-Detection-WCAY .
October 2023
·
2 Citations
May 2023
·
7 Reads
... The duplicate images produced by the RPN network may cause problems with real-time and processing resources, regardless of the excellent accuracy of the two-stage detection algorithm. In order to increase detection accuracy, the convolutional block attention (CBAM) module is inserted into the backbone network and added channel attention and deconvolution modules to the SSD backbone network [20]. They also streamlined the network using the lightweight MobileNetv2 network to create a feature fusion structure. ...
October 2023