December 2024
·
114 Reads
·
2 Citations
The Journal of Agricultural Life and Environmental Sciences
In the present study, we aimed to establish an efficient cultivation method for Tillandsia ionantha, which is commonly known as an air plant and is distributed as an ornamental succulent. This species was cultivated using non-substrate cultivation methods in a controlled environment, and the influence of various light spectra on its growth was investigated. The light-emitting diode (LED) light sources used included red (630 nm), green (520 nm), blue (450 nm), purple phyto-LED (450 nm, 650 nm, and far-red wavelengths), warm white (3000 K), natural white (4100 K), and cool white (6500 K) lights. The results showed that shoot length, root length, and leaf width significantly increased under monochromatic blue LED light, highlighting its effectiveness in promoting plant size. In contrast, root and leaf numbers were most effectively enhanced under cool white LED light, highlighting the suitability of broad-spectrum light for balanced root and leaf development. Biomass analysis revealed a growth imbalance between the shoot and root parts, with root biomass being the highest under warm white and cool white LED lights. Red LED light increased relative water content in shoots, indicating its potential for enhancing water retention. Additionally, the external quality of T. ionantha, evaluated using the Commission Internationale de l’Éclairage Lab (CIELAB) color space values, revealed significant changes in leaf coloration under various light spectra. The highest L * value was observed under the natural white LED treatment, whereas the a * and b * parameters varied significantly depending on the light spectra. These findings underscore the importance of light spectrum selection in optimizing T. ionantha various parameters and suggest that a combination of monochromatic and broad-spectrum light can be used complementarily for balanced growth and external quality. This study provides foundational data for the stable cultivation of epiphytic plant species in a controlled environment facility, supporting their broader application in the ornamental plant industry and indoor horticultural projects.