Erman Acar’s research while affiliated with Institute for Logic, Language & Computation and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (4)


Representation of the public goods game with three players and multiplication factor f=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=2$$\end{document}
Normal form games instantiating the PGG for two players (X and Y) with 4 coins each, for four possible values of the multiplication factor: f=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=0.5$$\end{document}, that is, a competitive game where DD is a dominant strategy equilibrium that is also Pareto dominant; f=1.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=1.5$$\end{document}, that is, a mixed-motive game where DD is a dominant strategy equilibrium but it is Pareto dominated by CC; f=2.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=2.0$$\end{document}, that is, a boundary mixed-motive game where DD is now a weakly dominant strategy equilibrium, again Pareto dominated by CC; f=3.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=3.5$$\end{document}, that is, a cooperative game where CC is a dominant strategy equilibrium that is also Pareto dominant
Setting deployed for the two-agent experiments with one uncertain agent (agent 1). a Settings with the action policy only, b setting with both the communication and action policies
Returns during training for the setting with two agents and without incentive uncertainty, in the scenarios without communication (top row) and with communication (bottom row). The curves are averages over 80 runs. The horizontal dashed lines represent the returns the agents would obtain if they always cooperate (dashed red line), always defect (dashed blue line), cooperate or defect with probability 0.5 (dashed green line). Agents are trained using REINFORCE
Probability of cooperating during training for the setting with two agents and no incentive uncertainty, in the non-communication case (upper row) versus communication case (lower row). Agents are trained using REINFORCE

+22

Learning in public goods games: the effects of uncertainty and communication on cooperation
  • Article
  • Full-text available

January 2025

·

28 Reads

Neural Computing and Applications

Nicole Orzan

·

Erman Acar

·

Davide Grossi

·

Communication is a widely used mechanism to promote cooperation in multi-agent systems. In the field of emergent communication, agents are typically trained in specific environments: cooperative, competitive or mixed-motive. Motivated by the idea that real-world settings are characterized by incomplete information and that humans face daily interactions under a wide spectrum of incentives, we aim to explore the role of emergent communication when simultaneously exploited across all these contexts. In this work, we pursue this line of research by focusing on social dilemmas. To do this, we developed an extended version of the Public Goods Game, which allows us to train independent reinforcement learning agents simultaneously in different scenarios where incentives are (mis)aligned to various extents. Additionally, agents experience uncertainty in terms of the alignment of their incentives with those of others. We equip agents with the ability to learn a communication policy and study the impact of emergent communication in the face of uncertainty among agents. Our findings show that in settings where all agents have the same level of uncertainty, communication can enhance the cooperation of the whole group. However, in cases of asymmetric uncertainty, the agents that do not face uncertainty learn to use communication to deceive and exploit their uncertain peers.

Download

Integrating Fuzzy Logic into Deep Symbolic Regression

November 2024

·

26 Reads

Credit card fraud detection is a critical concern for financial institutions, intensified by the rise of contactless payment technologies. While deep learning models offer high accuracy, their lack of explainability poses significant challenges in financial settings. This paper explores the integration of fuzzy logic into Deep Symbolic Regression (DSR) to enhance both performance and explainability in fraud detection. We investigate the effectiveness of different fuzzy logic implications, specifically {\L}ukasiewicz, G\"odel, and Product, in handling the complexity and uncertainty of fraud detection datasets. Our analysis suggest that the {\L}ukasiewicz implication achieves the highest F1-score and overall accuracy, while the Product implication offers a favorable balance between performance and explainability. Despite having a performance lower than state-of-the-art (SOTA) models due to information loss in data transformation, our approach provides novelty and insights into into integrating fuzzy logic into DSR for fraud detection, providing a comprehensive comparison between different implications and methods.


Learning in Multi-Objective Public Goods Games with Non-Linear Utilities

October 2024

·

2 Reads

Nicole Orzan

·

Erman Acar

·

Davide Grossi

·

[...]

·

Addressing the question of how to achieve optimal decision-making under risk and uncertainty is crucial for enhancing the capabilities of artificial agents that collaborate with or support humans. In this work, we address this question in the context of Public Goods Games. We study learning in a novel multi-objective version of the Public Goods Game where agents have different risk preferences, by means of multi-objective reinforcement learning. We introduce a parametric non-linear utility function to model risk preferences at the level of individual agents, over the collective and individual reward components of the game. We study the interplay between such preference modelling and environmental uncertainty on the incentive alignment level in the game. We demonstrate how different combinations of individual preferences and environmental uncertainty sustain the emergence of cooperative patterns in non-cooperative environments (i.e., where competitive strategies are dominant), while others sustain competitive patterns in cooperative environments (i.e., where cooperative strategies are dominant).


Learning in Multi-Objective Public Goods Games with Non-Linear Utilities

August 2024

·

8 Reads

Addressing the question of how to achieve optimal decision-making under risk and uncertainty is crucial for enhancing the capabilities of artificial agents that collaborate with or support humans. In this work, we address this question in the context of Public Goods Games. We study learning in a novel multi-objective version of the Public Goods Game where agents have different risk preferences, by means of multi-objective reinforcement learning. We introduce a parametric non-linear utility function to model risk preferences at the level of individual agents, over the collective and individual reward components of the game. We study the interplay between such preference modelling and environmental uncertainty on the incentive alignment level in the game. We demonstrate how different combinations of individual preferences and environmental uncertainties sustain the emergence of cooperative patterns in non-cooperative environments (i.e., where competitive strategies are dominant), while others sustain competitive patterns in cooperative environments (i.e., where cooperative strategies are dominant).