Erik G. Larsson's research while affiliated with Linköping University and other places

Publications (627)

Preprint
RadioWeaves network operates a large number of distributed antennas using cell-free architecture to provide high data rates and support a large number of users. Operating this network in an energy-efficient manner in the limited available spectrum is crucial. Therefore, we consider energy efficiency (EE) maximization of a RadioWeaves network that s...
Preprint
We develop a new algorithm for activity detection for grant-free multiple access in distributed multiple-input multiple-output (MIMO). The algorithm is a distributed version of the approximate message passing (AMP) based on a soft combination of likelihood ratios computed independently at multiple access points. The underpinning theoretical basis o...
Preprint
Full-text available
The acquisition of the channel covariance matrix is of paramount importance to many strategies in multiple-input-multiple-output (MIMO) communications, such as the minimum mean-square error (MMSE) channel estimation. Therefore, plenty of efficient channel covariance matrix estimation schemes have been proposed in the literature. However, an abrupt...
Preprint
RadioWeaves, in which distributed antennas with integrated radio and compute resources serve a large number of users, is envisioned to provide high data rates in next generation wireless systems. In this paper, we develop a physical layer abstraction model to evaluate the performance of different RadioWeaves deployment scenarios. This model helps s...
Preprint
Full-text available
The successful emergence of deep learning (DL) in wireless system applications has raised concerns about new security-related challenges. One such security challenge is adversarial attacks. Although there has been much work demonstrating the susceptibility of DL-based classification tasks to adversarial attacks, regression-based problems in the con...
Preprint
Full-text available
This letter considers the development of transmission strategies for the downlink of massive multiple-input multiple-output networks, with the objective of minimizing the completion time of the transmission. Specifically, we introduce a session-based scheme that splits time into sessions and allocates different rates in different sessions for the d...
Article
Full-text available
This letter considers the development of transmission strategies for the downlink of massive multiple-input multiple-output networks, with the objective of minimizing the completion time of the transmission. Specifically, we introduce a session-based scheme that splits time into sessions and allocates different rates in different sessions for the d...
Preprint
Reciprocity-based time-division duplex (TDD) Massive MIMO (multiple-input multiple-output) systems utilize channel estimates obtained in the uplink to perform precoding in the downlink. However, this method has been criticized of breaking down, in the sense that the channel estimates are not good enough to spatially separate multiple user terminals...
Preprint
Full-text available
GNSS receivers are vulnerable to jamming and spoofing attacks, and numerous such incidents have been reported worldwide in the last decade. It is important to detect attacks fast and localize attackers, which can be hard if not impossible without dedicated sensing infrastructure. The notion of participatory sensing, or crowdsensing, is that a large...
Preprint
We provide the optimal receive combining strategy for federated learning in multiple-input multiple-output (MIMO) systems. Our proposed algorithm allows the clients to perform individual gradient sparsification which greatly improves performance in scenarios with heterogeneous (non i.i.d.) training data. The proposed method beats the benchmark by a...
Preprint
Full-text available
Radio frequency (RF) wireless power transfer (WPT) is a promising technology for 6G use cases. It enables a massive, yet sustainable deployment of batteryless energy neutral (EN) devices at unprecedented scale. Recent research on 6G is exploring high operating frequencies up to the THz spectrum, where antenna arrays with large apertures are capable...
Preprint
We study joint unicast and multigroup multicast transmission in single-cell massive multiple-input-multiple-output (MIMO) systems, under maximum ratio transmission. For the unicast transmission, the objective is to maximize the weighted sum spectral efficiency (SE) of the unicast user terminals (UTs) and for the multicast transmission the objective...
Preprint
Future cellular networks are expected to support new communication paradigms such as machine-type communication (MTC) services along with human-type communication (HTC) services. This requires base stations to serve a large number of devices in relatively short channel coherence intervals which renders allocation of orthogonal pilot sequence per-de...
Preprint
This paper compares the sum rates and rate regions achieved by power-domain NOMA (non-orthogonal multiple access) and standard massive MIMO (multiple-input multiple-output) techniques. We prove analytically that massive MIMO always outperforms NOMA in i.i.d.~Rayleigh fading channels, if a sufficient number of antennas are used at the base stations....
Preprint
Full-text available
Future wireless networks require the integration of machine learning with communications, in an energy-efficient and privacy-preserving manner. Finding energy-efficient designs for federated learning (FL)-enabled wireless networks is of great interest. This work first proposes novel synchronous, asynchronous, and session-based designs for energy-ef...
Article
Full-text available
We consider Global Navigation Satellite Systems (GNSS) spoofing attacks and devise a countermeasure appropriate for mobile GNSS receivers. Our approach is to design detectors that, operating after the signal acquisition, enable the victim receiver to determine with high probability whether it is under a spoofing attack or not. Namely, the binary hy...
Article
We study downlink channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in time-division duplex. The users must know their effective channel gains to decode their received downlink data. Previous works have used the mean value as the estimate, motivated by channel hardening. However, this is associated wi...
Conference Paper
Full-text available
The knowledge of channel covariance matrices is of paramount importance to the estimation of instantaneous channels and the design of beamforming vectors in multi-antenna systems. In practice, an abrupt change in channel covariance matrices may occur due to the change in the environment and the user location. Although several works have proposed ef...
Conference Paper
Full-text available
With its privacy preservation and communication efficiency, federated learning (FL) has emerged as a learning framework that suits beyond 5G and towards 6G systems. This work looks into a future scenario in which there are multiple groups with different learning purposes and participating in different FL processes. We give energy-efficient solution...
Preprint
In a distributed multi-antenna system, multiple geographically separated transmit nodes communicate simultaneously to a receive node. Synchronization of these nodes is essential to achieve a good performance at the receiver. RadioWeaves is a new paradigm of cell-free massive MIMO array deployment using distributed multi-antenna panels in indoor env...
Preprint
Future wireless networks need to support massive machine type communication (mMTC) where a massive number of devices accesses the network and massive MIMO is a promising enabling technology. Massive access schemes have been studied for co-located massive MIMO arrays. In this paper, we investigate the activity detection in grant-free random access f...
Preprint
Full-text available
With the advances in virtual and augmented reality, gaming applications, and entertainment, certain indoor scenarios will require vastly higher capacity than what can be delivered by 5G. In this paper, we focus on massive MIMO for indoor environments. We provide a case study of the distributed deployment of the antenna elements over the walls of a...
Preprint
This paper presents a novel strategy to decentralize the soft detection procedure in an uplink cell-free massive multiple-input-multiple-output network. We propose efficient approaches to compute the a posteriori probability-per-bit, exactly or approximately when having a sequential fronthaul. More precisely, each access point (AP) in the network c...
Article
Deep learning (DL) architectures have been successfully used in many applications including wireless systems. However, they have been shown to be susceptible to adversarial attacks. We analyze DL-based models for a regression problem in the context of downlink power allocation in massive multiple-input-multiple-output systems and propose universal...
Preprint
Full-text available
Deep learning (DL) architectures have been successfully used in many applications including wireless systems. However, they have been shown to be susceptible to adversarial attacks. We analyze DL-based models for a regression problem in the context of downlink power allocation in massive multiple-input-multiple-output systems and propose universal...
Preprint
Full-text available
The knowledge of channel covariance matrices is of paramount importance to the estimation of instantaneous channels and the design of beamforming vectors in multi-antenna systems. In practice, an abrupt change in channel covariance matrices may occur due to the change in the environment and the user location. Although several works have proposed ef...
Article
Wireless-based activity sensing has gained significant attention due to its wide range of applications. We investigate radio-based multi-class classification of human activities using massive multiple-input multiple-output (MIMO) channel measurements in line-of-sight and non line-of-sight scenarios. We propose a tensor decomposition-based algorithm...
Preprint
We study downlink (DL) channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in a time-division duplex. The users must know their effective channel gains to decode their received DL data signals. A common approach is to use the mean value as the estimate, motivated by channel hardening, but this is associ...
Preprint
Full-text available
Wireless-based activity sensing has gained significant attention due to its wide range of applications. We investigate radio-based multi-class classification of human activities using massive multiple-input multiple-output (MIMO) channel measurements in line-of-sight and non line-of-sight scenarios. We propose a tensor decomposition-based algorithm...
Preprint
Full-text available
With its privacy preservation and communication efficiency, federated learning (FL) has emerged as a learning framework that suits beyond 5G and towards 6G systems. This work looks into a future scenario in which there are multiple groups with different learning purposes and participating in different FL processes. We give energy-efficient solution...
Article
Future wireless networks need to support massive machine type communication (mMTC) where a massive number of devices accesses the network and massive MIMO is a promising enabling technology. Massive access schemes have been studied for co-located massive MIMO arrays. In this paper, we investigate the activity detection in grant-free random access f...
Article
Future wireless cellular networks are envisioned to not only enhance broadband access for human-centric applications, but also offer massive connectivity across tens of billions of devices for machine-centric applications empowered by Internet of Things (IoT) technologies (e.g., smart factory and smart city). To embrace the forthcoming era of IoT,...
Article
Cell-free massive multiple-input-multiple-output (mMIMO) is an emerging technology for beyond 5G with its promising features such as higher spectral efficiency and superior spatial diversity as compared to conventional multiple-input-multiple-output (MIMO) technology. The main working principle of cell-free mMIMO is that many distributed access poi...
Preprint
Federated Learning (FL) is a newly emerged decentralized machine learning (ML) framework that combines on-device local training with server-based model synchronization to train a centralized ML model over distributed nodes. In this paper, we propose an asynchronous FL framework with periodic aggregation to eliminate the straggler issue in FL system...
Preprint
Full-text available
Massive access is one of the main use cases of beyond 5G (B5G) wireless networks and massive MIMO is a key technology for supporting it. Prior works studied massive access in the co-located massive MIMO framework. In this paper, we investigate the activity detection in grant-free random access for massive machine type communications (mMTC) in cell-...
Preprint
This paper studies the transmit power optimization in a multi-cell massive multiple-input multiple-output (MIMO) system. To overcome the scalability issue of network-wide max-min fairness (NW-MMF), we propose a novel power control (PC) scheme. This scheme maximizes the geometric mean (GM) of the per-cell max-min spectral efficiency (SE). To solve t...
Preprint
This paper studies the transmit power optimization in multi-cell massive multiple-input multiple-output (MIMO) systems. Network-wide max-min fairness (NW-MMF) and network-wide proportional fairness (NW-PF) are two well-known power control schemes in the literature. The NW-MMF focus on maximizing the fairness among users at the cost of penalizing us...
Article
Full-text available
In the past few years, a large body of literature has been created on downlink Non-Orthogonal Multiple Access (NOMA), employing superposition coding and Successive Interference Cancellation (SIC), in multi-antenna wireless networks. Furthermore, the benefits of NOMA over Orthogonal Multiple Access (OMA) have been highlighted. In this paper, we take...
Preprint
Full-text available
We study downlink channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in time-division duplex. The users must know their effective channel gains to decode their received downlink data. Previous works have used the mean value as the estimate, motivated by channel hardening. However, this is associated wi...
Article
In this letter, we consider the uplink of a cell-free Massive multiple-input multiple-output (MIMO) network where each user is decoded by a subset of access points (APs). An additional step is introduced in the cell-free Massive MIMO processing: each AP in the uplink locally implements soft MIMO detection and then shares the resulting bit log-likel...
Preprint
In this letter, we consider the uplink of a cell-free Massive multiple-input multiple-output (MIMO) network where each user is decoded by a subset of access points (APs). An additional step is introduced in the cell-free Massive MIMO processing: each AP in the uplink locally implements soft MIMO detection and then shares the resulting bit log-likel...
Article
This second part of the two-part Special Issue (SI) on massive access for 5G and beyond starts with several papers on massive access techniques, then switches to coverage enhancement approaches, and finishes with a paper on the application of massive access in industrial Internet-of-Things (IoT).
Article
Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RIS-aided link, a large number of passive reflecting elements (REs) are conventionally deployed at the RIS, resulting in large surface size and considerable circuit po...
Preprint
In this work, we consider the uplink of a scalable cell-free massive MIMO system where the users are served only by a subset of access points (APs) in the network. The APs are physically grouped into predetermined "cell-centric clusters", which are connected to different cooperative central processing units (CPUs). Given the cooperative nature of t...
Article
Massive access, also known as massive connectivity or massive machine-type communication (mMTC), is one of the main use cases of the fifth-generation (5G) and beyond 5G (B5G) wireless networks. In the past few years, it has received considerable attention in academia and industry. This Special Issue (SI) of the IEEE Journal on Selected Areas in Com...
Preprint
Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RIS-aided link, a large number of passive reflecting elements (REs) are conventionally deployed at the RIS, resulting in large surface size and considerable circuit po...
Preprint
Full-text available
Classification between different activities in an indoor environment using wireless signals is an emerging technology for various applications, including intrusion detection, patient care, and smart home. Researchers have shown different methods to classify activities and their potential benefits by utilizing WiFi signals. In this paper, we analyze...
Article
In cell-free massive multiple-input multiple-output (MIMO) the fluctuations of the channel gain from the access points to a user are large due to the distributed topology of the system. Because of these fluctuations, data decoding schemes that treat the channel as deterministic perform inefficiently. A way to reduce the channel fluctuations is to d...
Preprint
Full-text available
Deep learning (DL) is becoming popular as a new tool for many applications in wireless communication systems. However, for many classification tasks (e.g., modulation classification) it has been shown that DL-based wireless systems are susceptible to adversarial examples; adversarial examples are well-crafted malicious inputs to the neural network...
Preprint
Full-text available
In cell-free massive multiple-input multiple-output (MIMO) the fluctuations of the channel gain from the access points to a user are large due to the distributed topology of the system. Because of these fluctuations, data decoding schemes that treat the channel as deterministic perform inefficiently. A way to reduce the channel fluctuations is to d...
Preprint
Full-text available
In this paper, we take a critical and fresh look at the downlink multi-antenna NOMA literature. Instead of contrasting NOMA with OMA, we contrast NOMA with two other baselines. The first is conventional Multi-User Linear Precoding (MULP). The second is Rate-Splitting Multiple Access (RSMA) based on multi-antenna Rate-Splitting (RS) and SIC. We show...
Article
Full-text available
Average consensus algorithms have wide applications in distributed computing systems where all the nodes agree on the average value of their initial states by only exchanging information with their local neighbors. In this letter, we look into link-based network metrics which are polynomial functions of pair-wise node attributes defined over the...
Article
Full-text available
User activity detection in grant-free random access massive machine type communication (mMTC) using pilot-hopping sequences can be formulated as solving a non-negative least squares (NNLS) problem. In this work, two architectures using different algorithms to solve the NNLS problem is proposed. The algorithms are implemented using a fully parallel...
Article
Full-text available
In this work, we study age-optimal scheduling with stability constraints in a multiple access channel with two heterogeneous source nodes transmitting to a common destination. The first node is connected to a power grid and it has randomly arriving data packets. Another energy harvesting (EH) sensor monitors a stochastic process and sends status up...
Article
Full-text available
The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless com...
Preprint
We study opinion dynamics in a social network with stubborn agents who influence their neighbors but who themselves always stick to their initial opinion. We consider first the well-known DeGroot model. While it is known in the literature that this model can lead to consensus even in the presence of a stubborn agent, we show that the same result ho...
Preprint
Average consensus algorithms have wide applications in distributed computing systems where all the nodes agree on the average value of their initial states by only exchanging information with their local neighbors. In this letter, we look into link-based network metrics which are polynomial functions of pair-wise node attributes defined over the li...
Preprint
Cell-free massive multiple-input-multiple-output (mMIMO) is an emerging technology for beyond 5G with its promising features such as higher spectral efficiency and superior spatial diversity as compared to conventional multiple-input-multiple-output (MIMO) technology. The main working principle of cell-free mMIMO is that many distributed access poi...
Article
The search for physical layer technologies that can play a key role in beyond 5G systems has started. One option is reconfigurable intelligent surfaces (RISs), which can collect wireless signals from a transmitter and passively beamform them toward the receiver. The technology has exciting prospects and is quickly gaining traction in the communicat...