May 2025
·
12 Reads
The extensive use of polyolefins, such as polyethylene (PE) and polypropylene (PP), has led to a substantial accumulation of plastic waste, raising growing concerns about environmental impact and sustainability. In this study, the dielectric, thermal, and chemical properties of recycled materials were investigated, and blending with virgin polyethylene was examined as a sustainable strategy to enhance their electrical performance and promote material reuse. Dielectric analysis demonstrated that blending recycled materials with virgin polyethylene effectively reduced dielectric losses. With the addition of only 15% virgin HDPE, the dielectric loss was significantly lowered by 40% for recycled HDPE (rHDPE) and 30% for the recycled PE-PP blend (r(PE-PP))—compared to their unblended forms. Although the original recycled materials exhibited much higher dielectric losses than virgin HDPE—24 and 28 times greater for rHDPE and r(PE-PP), respectively, at 60 Hz—the blending approach clearly improved their electrical behavior. Overall, the results highlight blending as a practical and sustainable strategy to improve the dielectric performance of recycled polyolefins, enabling their reuse in applications such as electrical cable insulation while contributing to plastic waste reduction.