Eli Stickgold’s research while affiliated with Charles River Analytics and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


Table 1 . Example demographic attributes.
Extending Generative Models of Large Scale Networks
  • Article
  • Full-text available

December 2015

·

55 Reads

·

8 Citations

Procedia Manufacturing

·

Eli Stickgold

·

·

Ian Stewart

Since the launch of Facebook in 2004 and Twitter in 2006, the amount of publicly available social network data has grown in both scale and complexity. This growth presents significant challenges to conventional network analysis methods that rely primarily on structure. In this paper, we describe a generative model that extends structure-based connection preference methods to include preferences based on agent similarity or homophily. We also discuss novel methods for extracting model parameters from existing large scale networks (e.g., Twitter) to improve model accuracy. We demonstrate the validity of our proposed extensions and parameter extraction methods by comparing model-generated networks with and without the extensions to real-life networks based on metrics for both structure and homophily. Finally we discuss the potential implications for including homophily in models of social networks and information propagation.

Download

Citations (1)


... On the other hand, an estimate based on random networks may turn out to be inaccurate, thus leaving analysts in the dark for the actual resource needs of the algorithm. Consequently, our empirical measures are performed on the three structural archetypes most commonly cited (Lofdahl et al., 2015;Wang et al., 2019): small-world (i.e., high clustering and low average distance), random, and scale-free networks (i.e., power-law degree distribution). By identifying scaling bottlenecks for recent measures across these three sparse networks, our empirical analysis provides a list of algorithms that are prime candidates for approximation or parallelization in future studies. ...

Reference:

An Experimental Study on the Scalability of Recent Node Centrality Metrics in Sparse Complex Networks
Extending Generative Models of Large Scale Networks

Procedia Manufacturing