Elena Valer'evna Yurova’s research while affiliated with Ulyanovsk State University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (10)


DRUG PRECURSOR TARGETING THE BOMBESIN RECEPTOR FOR PEPTIDE-RECEPTOR RADIONUCLIDE THERAPY
  • Article

September 2024

·

5 Reads

Ulyanovsk Medico-biological Journal

Evgeniy Alekseevich Beloborodov

·

Elena Valer'evna Yurova

·

Dmitriy Evgen'evich Sugak

·

[...]

·

Yuriy Vladimirovich Saenko

Cancer is a leading cause of death worldwide. A promising modality for cancer treatment is peptide receptor radionuclide therapy. Therapeutic radionuclide is delivered using peptide-based vectors, which can bind to specific receptors on the cancer cell surface. Bombesin receptors are one of the receptors peculiar to many types of cancer, which can be targeted by peptide vectors. Peptides have a number of advantages, but they also have one serious drawback: low stability in the internal environment. To solve the problem, it is possible to the include a therapeutic peptide in the structure of a highly stable knottin peptide. Objective. The aim of the study is to examine the stability of BBN/C1-C2 structure, created on the basis of U5-scytotoxinSth1a knottin and bombesin tropic to bombesin receptor, and the ability of this structure to bind to target receptors on the cancer cell surface. Materials and Methods. BBN/C1-C2 peptide was obtained by solid-phase peptide synthesis. Then, is underwent chromatography purification under analytical chromatography and mass spectrometry control. Stability was studied by analytical chromatography. Competitive inhibition analysis was carried out using a fluorescently labeled GRP peptide with excess BBN/C1-C2 and fluorescently labeled BBN/C1-C2 with GRP bombesin receptor inhibitor. Cancer cell line PC-3 expressing bombesin receptors and normal cell line CHO-K1 not expressing bombesin receptors were used in the work. Results. The conducted studies have shown that hybrid BBN/C1-C2 peptide based on bombesin peptide inserted into the U5-scytotoxinSth1a knottin framework between the first and second cysteine residues has a greater stability compared to the commercial radiopharmaceutical PSMA-617. BBN/C1-C2 peptide is specific to bombesin receptor: it binds to PC-3 cancer cell line with a target bombesin receptor on its surface, and does not bind to the healthy CHO-K1 cell line, without a target receptor. BBN/C1-C2 peptide shows high affinity for the bombesin receptor, since GRP prevents its binding to the PC-3 cell line.


COMPARATIVE ANALYSIS OF MECHANISMS OF ACTION OF PEPTIDE TOXINS, INHIBITORS OF CALCIUM AND SODIUM CHANNELS, UNDER ISCHEMIA/REPERFUSION

June 2024

·

2 Reads

Ulyanovsk Medico-biological Journal

Ischemia contributes to many pathological conditions encountered in clinical practice. Besides, subsequent reperfusion may worsen tissue damage, exacerbating injuries caused by ischemia. Shifts in the balance of calcium and sodium ions play a major role in the development of ischemia-reperfusion injury. Inhibitors of calcium and sodium ion channels located on the membrane surface can help to avoid a sharp disturbance in the ion balance. Although such inhibitors reduce cell death, their mechanisms of action differ. The aim of the study is to conduct a comparative analysis of the mechanisms of action of peptide inhibitors of calcium and sodium channels on ischemia-reperfusion damage to epithelial cells. Materials and Methods. Peptide synthesizer was used for toxin synthesis. Chromatography and mass spectrometry were used for quality control. Analysis of cell death, changes in calcium and sodium ion concentrations, and pH levels were performed using fluorescent dyes and a multimodal reader. Results. It was found that peptide inhibitors of calcium and sodium channels reduce apoptosis and necrosis levels in CHO-K1 culture under simulated ischemia/reperfusion. The calcium channel inhibitor reduces cell death by lowering calcium and sodium ion concentrations and maintaining physiological pH levels throughout the reperfusion phase. The sodium channel inhibitor reduces death by lowering calcium and increasing sodium concentrations, and by maintaining an elevated pH throughout the reperfusion phase. Conclusion. Although both calcium and sodium concentrations as well as their mutual influence play an important role in the development of ischemia-reperfusion injury, inhibition of certain channels has different effects on intracellular processes with the same result, namely reduced cell death.


STUDY OF A RADIOPHARMACEUTICAL PRECURSOR TARGETING PROSTATE-SPECIFIC MEMBRANE ANTIGEN

March 2024

·

4 Reads

Ulyanovsk Medico-biological Journal

Prostate cancer is one of the most commonly diagnosed cancers worldwide. Targeted therapy is an anticancer strategy using short peptides targeting prostate-specific membrane antigen (PSMA). However, short peptides have a number of disadvantages, including low stability in vivo. This problem can be solved by using toxins with an inhibitory cystine knot with a short built in peptide. The aim of the study is to examine the stability and ability of the PSMA/C1-C2 peptide, created on the base of knottin U5-scytotoxin-Sth1a and a short peptide tropic to PSMA, to bind to receptors on the surface of prostate cancer cells and to compare the results with a market image drug PSMA I&T and a specific PSMA inhibitor. Materials and Methods. A solid-phase peptide synthesizer was used for peptide synthesis, chromatography and mass spectrometry were applied for analysis and purification. A competitive inhibition analysis was performed with radiolabeled commercial PSMA I&T in excess of PSMA/C1-C2 and FAM-labeled PSMA/C1-C2 with a specific PSMA inhibitor 2-PMPA. PSMA-positive culture 22Rv1 and PSMA-negative culture PC-3 were used as cell cultures. Chromatography was used to access peptide stability. Results. As a result, it was observed that the synthesized PSMA/C1-C2 structure, created on the basis of knottin and a short peptide, prevents binding of PSMA I&T to receptors on the surface of 22Rv1 cells. The decrease in PSMA/C1-C2 binding in the presence of 2-PMPA suggests that PSMA/C1-C2 is targeted for prostate-specific membrane antigen. In addition, PSMA/C1-C2 peptide has increased stability compared to PSMA I&T.


ROLE OF SODIUM CHANNELS IN THE DEVELOPMENT OF OXIDATIVE STRESS IN ISCHEMIA/REPERFUSION MODEL

March 2023

·

10 Reads

Ulyanovsk Medico-biological Journal

Ischemic and reperfusion injury is a critical condition, as it is necessary to control cell death and maintain tissue function. Restoration of nutrient and oxygen flow causes secondary damage to ischemic cells and is called reperfusion injury. Reperfusion injury causes, on the one hand, fluctuations in ion concentration inside cells, in particular sodium ions, due to changes in the conductivity of voltage-dependent ion channels, and, on the other hand, activation of the antioxidant system as a response to oxidative stress, in which the key role is given to reactive oxygen species and nitric oxide. Thus, the effect of ion channel inhibitors on the progression of oxidative stress, apoptosis and necrosis during reperfusion is of particular interest. The aim of the study is to examine the impact of sodium channels on oxidative stress under ischemic and reperfusion injury and sodium channel blockers action. Materials and Methods. The authors studied the influence of the synthesized peptide toxin, an inhibitor of voltage-gated sodium channels, under modelled ischemia/reperfusion in CHO-K1 culture on the level of apoptosis, necrosis, and oxidative stress (concentration of reactive oxygen species, nitric oxide, and glutathione) using fluorescent dyes and fluorescence microplate reader. Results. Data obtained indicate a decreased level of apoptosis and necrosis, and a control level of nitric oxide under toxin at a nanomolar concentration. At the same time, the concentrations of reactive oxygen species and glutathione did not change. Thus, the inhibitor toxin acted as a protective agent by preventing a decrease in the nitric oxide concentration, which favorably affected the survival of the cell culture during reperfusion after ischemia.


EXPRESSION OF H/ACA snoRNA IN CELL LINES WITH CHROMOSOMAL ABNORMALITIES AFTER IRRADIATION

December 2022

·

15 Reads

Ulyanovsk Medico-biological Journal

The H/ACA snoRNA family is involved in pseudouridine biogenesis. It prevents genetic changes in cells and makes them more stable due to ribosomal RNA characteristics. Therefore, the study of H/ACA snoRNA expression in cell lines with chromosomal disorders after irradiation is of particular interest. The purpose of the study is to analyze the effect of chromosomal disorders on H/ACA snoRNA expression in radioresistant K562 and radiosensitive HL-60 cell lines after radiation exposure. Materials and Methods. K562 and HL-60 cell lines were exposed to radiation (4 Gy). H/ACA snoRNA expression was analyzed by NGS sequencing (1, 4, and 24 hours after irradiation). Results. The authors revealed differences in H/ACA snoRNA expression by chromosomes in the studied cell lines, as well as the impact of chromosomal abnormalities on H/ACA snoRNA expression after radiation exposure. Changes in the copy number of normal chromosomes lead to minor changes in H/ACA snoRNA expression. Marker chromosomes disrupt H/ACA snoRNA expression. Thus, is becomes impossible to use H/ACA snoRNAs located in abnormal chromosomes as radioresistance markers. Moreover, marker chromosomes decrease the number of H/ACA snoRNAs expressed in K562, despite the greater amount of genetic material.


IMPACT OF THE GENE EXPRESSION LEVEL AND INTERMOLECULAR INTERACTION NETWORKS ON RADIORESISTANCE OF TUMOR CELLS

September 2022

·

5 Reads

Ulyanovsk Medico-biological Journal

Despite its efficacy, radiation therapy faces the challenges connected with accelerated reproduction of tumor cells and radioresistance of malignant neoplasms. The aim of the study was to analyze the impact of the gene expression level and intermolecular interaction networks on the development of tumor cell radioresistance. Materials and Methods. The authors used 4 tumor cell lines: (K562, HCT-116p53 (+/+), HCT-116p53 (–/–), and Me45. To study the cell line transcriptome. Affymetrix high-density hybridization DNA chips (HGU133A series) were used. Bioinformatic analysis of gene expression dynamics was performed using the original Gene Selector program. Intermolecular interaction networks were studied using the STRING online system. Results. After exposure to ionizing radiation at a dose of 4 Gy, the expression level of DAAM1, IFNAR2, PALLD, and STK17A genes increases in K562 cell line and decreases in HCT-116p53 (+/+), HCT-116p53 (–/–) and Me45. Numerous protein complexes of the studied genes were found with STRING online system. Thus, DAAM1, IFNAR2, PALLD, and STK17A genes influence the activity of some particles in the network of intermolecular interactions. Selected DAAM1, IFNAR2, PALLD and STK17A genes and protein-protein complexes encoded by DAAM1, TNK2, PTBP2 and DVL2; IFNAR2, STAT2, IRF9, JAK1, GNB2L1 and IFNAR1; PALLD, LPP and ACTN2 genes can be used as potential targets. Their modulation can increase the response of malignant neoplasm cells to ionizing radiation.


USE OF KNOTTIN AS A PSMA-TROPIC PEPTIDE CARRIER

June 2022

·

7 Reads

Ulyanovsk Medico-biological Journal

Prostate cancer is the most common type of cancer in males. Approximately 1.3 million cases of prostate cancer and over 400,000 deaths from the disease are diagnosed annually. The number of deaths is expected to double by 2040. Common methods of prostate cancer treatment have many disadvantages; one of them is the relapse risk. The shortcomings of traditional therapy have led to peptide-receptor radionuclide therapy. The aim of the study is to examine binding efficiency of Lu177 labeled knottins containing PSMA-tropic peptide in different domains in vitro and their biodistribution in vivo. Materials and Methods. We used prostate cancer cell (LNCaP, PC3) and ovarian fibroblast cell (CHO-K1) cultures. The peptides were synthesized using a peptide synthesizer (ResPepSL, Intavis). We studied peptide stability, their toxicity, binding to cell cultures, and biodistribution on the example of breast adenocarcinoma-bearing BALB/c mice. Chromatographic methods and radiometric techniques were used. Results. The synthesized peptides with GTIQPYPFSWGY sequence inserted into U5-cytotoxin-Sth1a node are more stable in blood plasma and saline than 177Lu-PSMA-617a, but have a similar degree of binding. Biodistribution studies in BALB/c mice show a higher binding index of the synthesized peptide if compared to 177Lu-PSMA-617. Conclusion. Modified peptides with a PSMA-tropic peptide inserted into the structure of U5-Sth1a toxin demonstrate high stability both in saline and in blood plasma, as well as good binding to cell cultures and tumors.


COMPLEX EFFECT OF LOW-INTENSITY LASER RADIATION AND POTASSIUM CHANNEL PEPTIDE INHIBITOR ON MELANOMA CELL SURVIVAL

April 2022

·

12 Reads

Ulyanovsk Medico-biological Journal

Melanoma is characterized by an aggressive development and a large number of metastases during diagnostics. Photodynamic therapy (PDT) is used to treat this type of cancer. However, the accumulation of photosensitizers is observed not only in malignant tumors, but also in high metabolic rate organs. Shortcomings of melanoma therapy can be eliminated using the complex effect of laser radiation and local administration of inhibitors of cellular processes. The goal. To study the complex effect of low-intensity laser radiation and potassium channel peptide inhibitor on melanoma cell survival. Materials and Methods. A875 melanoma cells were exposed to Kappa-theraphotoxin-Gr1b toxin and laser irradiation. The authors examined the level of apoptosis and necrosis in cells using fluorescence microscopy techniques. The xCELLigence system was used to assess the cytotoxic response of A875 melanoma cells. Results. The maximum number of apoptotic and necrotic cells was observed in the group of patients with A875 tumor cells exposed to a combination of Kappa-TRTX-Gr1b toxin and laser radiation (wavelength=1265 nm). This is due to the inhibition of potassium channels of intracellular cell membranes by Kappa-TRTX-Gr1b peptide, which are associated with the apoptosis. Conclusion. Selective potassium channel inhibition under pathological processes can be regarded as a significant supplement to the superficial malignant neoplasm complex therapy. The combination of toxin and irradiation will make it possible to potentiate their action and avoid the main PDT disadvantages. This approach unites the benefits of the local administration and precise exposure on the malignant tumor.



ANTIAPOPTOTIC POTENTIAL OF SPIDER TOXINS

July 2021

·

9 Reads

Ulyanovsk Medico-biological Journal

Arthropod peptide toxins rich in disulfide bonds are one of the potential sources of bioactive substances. Due to their structure, toxins have increased stability and are able to bind to ion channels, blocking them or changing the gating mechanism. Some spider toxins bind to different types of calcium channels. Calcium ions, in turn, play an important role in many cellular processes, namely, apoptosis. The aim of this paper is to investigate the effect of a number of toxins – arachnid ion-channel blockers in – on intracellular processes associated with the induction of apoptosis in mammalian cells. Materials and Methods. Toxins ω-hexatoxin-Hv1a, ω-theraphotoxin-Hhn2a were used in the study, as they are inhibitors of L- and P/Q-type calcium channels, respectively. Apoptosis was induced using the AC-1001H3 peptide. The authors used fluorescence microscopy to study the effect of toxins on the apoptosis level, oxidative stress, and mitochondrial potential in CHO-K1 cells. Results. The authors observed that incubation of cells with toxins (10 nM) and AC-1001H3 peptide led to increased ROI intracellular concentration, which should have induced apoptotic mechanisms. However, the effect was the opposite. In addition, there was an increase in the mitochondrial potential level. Despite this, the used toxins blocked apoptosis caused by AC-1001H3 and reduced the natural apoptosis level in the CHO-K1 cells. Conclusion. The study demonstrated the antiapoptotic effect of some arthropod peptide toxins. The studied toxins can be used in the treatment of pathologies associated with the activation of apoptotic mechanisms. Keywords: apoptosis, spider toxin, peptide. Пептидные токсины членистоногих, богатые дисульфидными связями, являются одним из потенциальных источников биоактивных веществ. За счет своей структуры токсины обладают повышенной стабильностью и способны связываться с ионными каналами, блокируя их или изменяя механизм стробирования. Ряд токсинов пауков способен связываться с кальциевыми каналами разных типов. Ионы кальция в свою очередь играют важную роль во многих процессах в клетке, одним из которых является апоптоз. Цель работы – исследовать влияние ряда токсинов – блокаторов ионных каналов паукообразных – на внутриклеточные процессы, связанные с индукцией апоптоза в клетках млекопитающих. Материалы и методы. В исследовании использовались токсины ω-hexatoxin-Hv1a, ω-theraphotoxin-Hhn2a, которые являются ингибиторами кальциевых каналов L- и P/Q-типов соответственно. Индукция апоптоза проводилась с использованием пептида AC-1001H3. Изучалось влияние токсинов на уровень апоптоза, оксидативного стресса и митохондриального потенциала в клетках линии CHO-K1 с использованием методов флуоресцентной микроскопии. Результаты. Было установлено, что инкубация клеток с токсинами в концентрации 10 нМ и индуктором апоптоза AC-1001H3 приводила к росту внутриклеточной концентрации активных форм кислорода, что должно индуцировать апоптотические механизмы, однако эффект был противоположным. Кроме того, происходило повышение уровня митохондриального потенциала. Несмотря на это использованные токсины блокировали апоптоз, вызванный AC-1001Н3, и снижали уровень естественного апоптоза в культуре клеток CHO-K1. Выводы. Проведенное исследование продемонстрировало антиапоптотический эффект ряда пептидных токсинов членистоногих. Изученные токсины могут найти применение при лечении патологии, связанной с активацией апоптотических механизмов. Ключевые слова: апоптоз, токсин паука, пептид.