May 2021
·
25 Reads
·
14 Citations
ACS Synthetic Biology
This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.
May 2021
·
25 Reads
·
14 Citations
ACS Synthetic Biology
October 2020
·
95 Reads
The design of small molecules that inhibit disease-relevant proteins represents a longstanding challenge of medicinal chemistry. Here, we describe an approach for encoding this challenge—the inhibition of a human drug target—into a microbial host and using it to guide the discovery and biosynthesis of targeted, biologically active natural products. This approach identified two previously unknown terpenoid inhibitors of protein tyrosine phosphatase 1B (PTP1B), an elusive therapeutic target for the treatment of diabetes and cancer. Both inhibitors target an allosteric site, which confers unusual selectivity, and can inhibit PTP1B in living cells. A screen of 24 uncharacterized terpene synthases from a pool of 4,464 genes uncovered additional hits, demonstrating a scalable discovery approach, and the incorporation of different PTPs into the microbial host yielded alternative PTP-specific detection systems. Findings illustrate the potential for using microbes to discover and build natural products that exhibit precisely defined biochemical activities yet possess unanticipated structures and/or binding sites.
October 2020
·
97 Reads
The design of small molecules that inhibit disease-relevant proteins represents a longstanding challenge of medicinal chemistry. Here, we describe an approach for encoding this challenge—the inhibition of a human drug target—into a microbial host and using it to guide the discovery and biosynthesis of targeted, biologically active natural products. This approach identified two previously unknown terpenoid inhibitors of protein tyrosine phosphatase 1B (PTP1B), an elusive therapeutic target for the treatment of diabetes and cancer. Both inhibitors appear to target an allosteric site, which confers selectivity, and can inhibit PTP1B in living cells. A screen of 24 uncharacterized terpene synthases from a pool of 4,464 genes uncovered additional hits, demonstrating a scalable discovery approach, and the incorporation of different PTPs into the microbial host yielded alternative PTP-specific detection systems. Findings illustrate the potential for using microbes to discover and build natural products that exhibit precisely defined biochemical activities yet possess unanticipated structures and/or binding sites.
June 2019
·
27 Reads
Biochemistry
August 2018
·
205 Reads
·
23 Citations
Biochemistry
Protein tyrosine phosphatases (PTPs) contribute to a striking variety of human diseases, yet they remain vexingly difficult to inhibit with uncharged, cell-permeable molecules; no inhibitors of PTPs are approved for clinical use. This study uses a broad set of biophysical analyses to evaluate the use of abietane-type diterpenoids—a biologically active class of phytometabolites with largely nonpolar structures—for the development of pharmaceutically relevant PTP inhibitors. Results of nuclear magnetic resonance analyses, mutational studies, and molecular dynamics simulations indicate that abietic acid can inhibit protein tyrosine phosphatase 1B, a negative regulator of insulin signaling and an elusive drug target, by binding to its active site in a non-substrate-like manner that stabilizes the catalytically essential WPD loop in an inactive conformation; detailed kinetic studies, in turn, show that minor changes in the structures of abietane-type diterpenoids (e.g., the addition of hydrogens) can dramatically improve potency (i.e., lower IC50). These findings elucidate a previously uncharacterized mechanism of diterpenoid-mediated inhibition and suggest, more broadly, that abietane-type diterpenoids are a promising source of structurally diverse—and, intriguingly, microbially synthesizable—molecules on which to base the design of new PTP-inhibiting therapeutics.
... In prior work, we developed a bacterial two-hybrid (B2H) system that links the inhibition of PTP1B from Homo sapiens (H. sapiens) to the expression of a gene for antibiotic resistance in E. coli (Sarkar et al., 2021). Our original study details the development of this system and describes each of its components, including the promoters and ribosome binding sites. ...
May 2021
ACS Synthetic Biology
... IPA amides also exhibit an analgesic effect on male inbred mice [24]. Moreover, IPA was shown to inhibit protein-tyrosine phosphatase 1B (PTP1B) better than abietic and dehydroabietic acid [25]. PTP1B is an enzyme in the protein tyrosine phosphatase (PTP) family that is responsible for the regulation of many processes, particularly metabolism, and often contributes to diseases that occur when these processes are disrupted (diabetes, cancer, autoimmune, and Alzheimer's diseases) [25]. ...
August 2018
Biochemistry