Ebenezer N Yamoah's research while affiliated with University of Nevada, Reno and other places

Publications (131)

Article
Repressor element 1-silencing transcription factor (REST) is a transcriptional repressor that recognizes neuron-restrictive silencer elements in the mammalian genomes in a tissue- and cell-specific manner. The identity of REST target genes and molecular details of how REST regulates them are emerging. We performed conditional null deletion of Rest...
Article
A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of...
Article
Full-text available
Somatosensory, taste, vestibular, and auditory information is first processed in the brainstem. From the brainstem, the respective information is relayed to specific regions within the cortex, where these inputs are further processed and integrated with other sensory systems to provide a comprehensive sensory experience. We provide the organization...
Article
Full-text available
The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death...
Article
Full-text available
Intracellular pH (pHi) plays critical roles in the regulation of cardiac function. Methods and techniques for cardiac pHi measurement have continued to evolve since early 1960s. Fluorescent microscopy is the most recently developed technique with several advantages over other techniques including higher spatial and temporal resolutions, and feasibi...
Article
Full-text available
Among the features of cisplatin chemotherapy-induced peripheral neuropathy are chronic pain and innocuous mechanical hypersensitivity. The complete etiology of the latter remains unknown. Here, we show that cisplatin targets a heterogeneous population of tyrosine hydroxylase-positive (TH+) primary afferent dorsal root ganglion neurons (DRGNs) in mi...
Article
Full-text available
Mechanosensation - by which mechanical stimuli are converted into a neuronal signal - is the basis for the sensory systems of hearing, balance, and touch. Mechanosensation is unmatched in speed and its diverse range of sensitivities, reaching its highest temporal limits with the sense of hearing; however, hair cells (HCs) and the auditory nerve (AN...
Preprint
Repressor element 1-silencing transcription factor (REST) is a transcriptional repressor that recognizes neuron-restrictive silencer elements in the mammalian genomes in a tissue- and cell-specific manner. The identity of REST target genes and molecular details of how REST regulates them are emerging. We performed conditional null deletion of Rest...
Article
Full-text available
Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one...
Article
Full-text available
Neuronal development in the inner ear is initiated by expression of the proneural basic Helix-Loop-Helix (bHLH) transcription factor Neurogenin1 that specifies neuronal precursors in the otocyst. The initial specification of the neuroblasts within the otic epithelium is followed by the expression of an additional bHLH factor, Neurod1. Although NEUR...
Preprint
Full-text available
Among the features of cisplatin chemotherapy-induced peripheral neuropathy are chronic pain and innocuous mechanical hypersensitivity. The complete etiology of the latter remains unknown. Here, we show that cisplatin targets a heterogeneous population of tyrosine hydroxylase-positive (TH+) primary afferent dorsal root ganglion neurons (DRGNs) withi...
Article
Full-text available
The vestibular system is vital for proper balance perception, and its dysfunction contributes significantly to fall-related injuries, especially in the elderly. Vestibular ganglion neurons innervate vestibular hair cells at the periphery and vestibular nuclei and the uvula and nodule of the cerebellum centrally. During aging, these vestibular gangl...
Article
Full-text available
Prestin (Slc26a5) is a motor protein previously considered to be expressed exclusively in outer hair cells (OHCs) of the inner ear. However, we recently identified the functional expression of prestin in the heart. Nonlinear capacitance (NLC) measurement in OHCs is used to evaluate the signature function of prestin, which exhibits membrane potentia...
Article
Full-text available
The mammalian heart beats incessantly with rhythmic mechanical activities generating acids which need to be buffered to maintain a stable intracellular pH (pHi) for normal cardiac function. Even though spatial pHi non-uniformity in cardiomyocytes has been documented, it remains unknown how pHi is regulated to match the dynamic cardiac contractions....
Article
Background: Long QT syndrome (LQTS) is a hereditary disease that predisposes patients to life-threatening cardiac arrhythmias and sudden cardiac death. Our previously study of human ether-à-go-go related gene (hERG)-encoded K+ channel (Kv11.1) supports an association between hERG and RING Finger Protein 207 (RNF207) variants in aggravating the ons...
Preprint
A cardinal feature of the auditory pathway is frequency selectivity, represented in the form of a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates molecular and cellular features of auditory neurons, including the form...
Article
Full-text available
The two types of spiral ganglion neurons (SGNs), types I and II, innervate inner hair cells and outer hair cells, respectively, within the mammalian cochlea and send another process back to cochlear nuclei in the hindbrain. Studying these two neuronal types has been made easier with the identification of unique molecular markers. One of these marke...
Preprint
Full-text available
Mechanosensation – by which mechanical stimuli are converted into a neuronal signal – is the basis for the sensory systems of hearing, balance, and touch. Mechanosensation is unmatched in speed and its diverse range of sensitivities, reaching its highest temporal limits with the sense of hearing; however, hair cells (HCs) and the auditory nerve (AN...
Article
Full-text available
We review the molecular basis of three related basic helix–loop–helix (bHLH) genes (Neurog1, Neurod1, and Atoh1) and upstream regulators Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires early expression of Neurog1, followed by i...
Article
Full-text available
Cardiac cells generate and amplify force in the context of cardiac load, yet the membranous sheath enclosing the muscle fibers—the sarcolemma—does not experience displacement. That the sarcolemma sustains beat-to-beat pressure changes without experiencing significant distortion is a muscle-contraction paradox. Here, we report that an elastic elemen...
Article
Cav3 channels play a critical role in maintaining calcium homeostasis, and its dysregulation is related to age-related diseases, such as age-related hearing loss (AHL). However, the underlying mechanism of the Cav3 channels involved in AHL remains unknown. Previous studies have shown that the degeneration of spiral ganglion neurons (SGNs) plays a c...
Article
Full-text available
We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix–loop–helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstrea...
Article
Full-text available
Cisplatin chemotherapy often causes permanent hearing loss, which leads to a multifaceted decrease in quality of life. Identification of early cisplatin-induced cochlear damage would greatly improve clinical diagnosis and provide potential drug targets to prevent cisplatin’s ototoxicity. With improved functional and immunocytochemical assays, a rec...
Book
The seven volumes of the second edition of The Senses: A Comprehensive Reference follow the principle of the first edition but are expanded to provide a novel second edition. Major restructuring will be presented by “Vision” (Vol 1; Paul Martin), “Auditory” (Vol 2; Benedikt Grothe), “Olfaction and Taste” (Vol 3; Wolfgang Meyerhof), “Somatosensation...
Article
Full-text available
Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca2+-dependent proteins and ion channels. Mutations in CaM cause life-threatening cardiac arrhythmias. Among the known CaM targets, small-conductance Ca2+-activated K+ (SK) channels are unique, since they are gated solely by beat-to-beat changes in intracellular Ca2...
Article
Full-text available
Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca²¹ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related...
Article
Full-text available
Stem cell replacement offers a great potential for cardiac regenerative therapy. However, one of the critical barriers to stem cell therapy is a significant loss of transplanted stem cells from ischemia and inflammation in the host environment. Here, we tested the hypothesis that inhibition of the soluble epoxide hydrolase (sEH) enzyme using sEH in...
Article
Full-text available
The mammalian cochlea relies on active electromotility of outer hair cells (OHCs) to resolve sound frequencies. OHCs use ionic channels and somatic electromotility to achieve the process. It is unclear, though, how the kinetics of voltage-gated ionic channels operate to overcome extrinsic viscous drag on OHCs at high frequency. Here, we report ultr...
Article
Age-related hearing loss (ARHL) is the most prevalent age-related sensory deficit. ARHL reduces the quality of life of the growing aging population, setting seniors up for the enhanced mental decline. The size of the needy population, the structural deficit, and a likely research strategy for effective treatment of chronic neurosensory hearing in t...
Chapter
Full-text available
Synopsis Mechanosensation at its core requires opening transmembrane proteins through mechanical forces. Such forces can act within the lipid bilayer (force-by-lipid) or though intracellular and/or extracellular connections (force-by-tether). Building on the assumption that specialized, tethered mechanotransduction channels evolved from lipid embed...
Article
Local and privileged expression of dendritic proteins allows segregation of distinct functions in a single neuron but may represent one of the underlying mechanisms for early and insidious presentation of sensory neuropathy. Tangible characteristics of early hearing loss (HL) are defined in correlation with nascent hidden hearing loss (HHL) in huma...
Article
Full-text available
Ninety percent of Americans consume less than the estimated average requirements of dietary vitamin E (vitE). Severe vitE deficiency due to genetic mutations in the tocopherol transfer protein (TTPA) in humans results in ataxia with vitE deficiency (AVED), with proprioceptive deficits and somatosensory degeneration arising from dorsal root ganglia...
Article
Presbycusis or age-related hearing loss (ARHL) is the most common sensory deficit in the human population. A substantial component of the etiology stems from pathological changes in sensory and non-sensory cells in the cochlea. Using a non-obese diabetic (NOD) mouse model, we have characterized changes in both hair cells and spiral ganglion neurons...
Article
Full-text available
Presbycusis or age-related hearing loss (ARHL) is the most common sensory deficit in the human population. A substantial component of the etiology stems from pathological changes in sensory and non-sensory cells in the cochlea. Using a non-obese diabetic (NOD) mouse model, we have characterized changes in both hair cells and spiral ganglion neurons...
Article
Full-text available
Potassium (K+) channels shape the response properties of neurons. Although enormous progress has been made to characterize K+ channels in the primary auditory neurons, the molecular identities of many of these channels and their contributions to hearing in vivo remain unknown. Using a combination of RNA sequencing and single molecule fluorescent in...
Article
Background: Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca ²⁺ -dependent ion channels. Mutations in CALM1, CALM2, and CALM3 have recently been linked to cardiac arrhythmias, such as Long QT Syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), and familial idiopathic ventricular fibri...
Data
Cleaved caspase-3 was not detected in SGNs from apex (A) and base (B) of young and old mice. SGNs were labeled with the neuronal marker Tuj1 (green), cleaved caspase-3 were stained red, and nuclei were stained with DAPI (blue). Scale bar 20 μm.
Article
Full-text available
Age-related hearing loss (AHL) is the most common sensory disorder in the elderly population, and the etiologies are diverse. To understand the underlying mechanisms of AHL, one strategy is to identify correlates of the disease for comprehensive evaluation of treatment approaches. Dysfunction and degeneration of spiral ganglion neurons (SGNs) are m...
Article
Full-text available
Noise is the most common occupational and environmental hazard, and noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit. Although therapeutics that target the free-radical pathway have shown promise, none of these compounds is currently approved against NIHL by the United States Food and Drug Administra...
Article
Full-text available
Small-conductance Ca2+-activated K+(SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca2+and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca2+dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the act...
Article
Full-text available
Background: Intracellular pH (pHi) is critical to cardiac excitation and contraction; uncompensated changes in pHi impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pHi regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We...
Article
Key points: Ion channels are transmembrane proteins that are synthesized within the cells but need to be trafficked to the cell membrane for the channels to function. Small-conductance, Ca(2+) -activated K(+) channels (SK, KCa 2) are unique subclasses of K(+) channels that are regulated by Ca(2+) inside the cells; they are expressed in human atria...
Chapter
Chickens are an invaluable model for exploring auditory physiology. Similar to humans, the chicken inner ear is morphologically and functionally close to maturity at the time of hatching. In contrast, chicks can regenerate hearing, an ability lost in all mammals, including humans. The extensive morphological, physiological, behavioral, and pharmaco...
Chapter
Spiral ganglion neurons (SGNs) faithfully encode acoustic waves from hair cells to the cochlear nucleus (CN) using voltage-dependent ion channels. A sizable portion of our knowledge on SGN functions have been derived from pre-hearing neurons. In post-hearing SGNs, the mechanisms of how they encode the massive sound information without delay and pre...
Article
Background: Atrial fibrillation represents the most common arrhythmia leading to increased morbidity and mortality, yet, current treatment strategies have proven inadequate. Conventional treatment with antiarrhythmic drugs carries a high risk for proarrhythmias. The soluble epoxide hydrolase enzyme catalyzes the hydrolysis of anti-inflammatory epo...
Article
Full-text available
Calmodulin (CaM), a Ca2+ sensing protein, is constitutively bound to IQ domains of the C-termini of human Kv7 (hKv7, KCNQ) channels to mediate Ca2+-dependent reduction of Kv7 currents. However, the mechanism remains unclear. We report that CaM binds to two isoforms of the hKv7.4 channel in a Ca2+-independent manner but only the long isoform (hKv7.4...
Article
Full-text available
Kv7.1 voltage-gated K(+) (Kv) channels are present in the apical membranes of marginal cells of the stria vascularis of the inner ear, where they mediate K(+) efflux into the scala media (cochlear duct) of the cochlea. As such, they are exposed to the K(+)-rich (∼150 mM of external K(+) (K(+) e)) environment of the endolymph. Previous studies have...
Patent
Full-text available
A pluripotent stem cell isolated from the lateral ventrical of the brain or choroid plexus is provided. Compositions and methods of isolating and using the cell also is provided.
Article
Full-text available
The developmental rehearsal for the debut of hearing is marked by massive changes in the membrane properties of hair cells (HCs) and spiral ganglion neurons (SGNs). Whereas the underlying mechanisms for the developing HC transition to mature stage are understood in detail, the maturation of SGNs from hyperexcitable prehearing to quiescent postheari...
Article
Cav1.3 L-type Ca2+ channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillati...
Article
Full-text available
For an excitable cell to function properly, a precise number of ion channel proteins need to be trafficked to distinct locations on the cell surface membrane, through a network and anchoring activity of cytoskeletal proteins. Not surprisingly, mutations in anchoring proteins have profound effects on membrane excitability. Ca(2+)-activated K(+) chan...
Article
Full-text available
Spiral ganglion neurons (SGNs) of the eighth nerve serve as the bridge between hair cells and the cochlear nucleus. Hair cells use Cav1.3 as the primary channel for Ca(2+) inflow to mediate transmitter release. In contrast, SGNs are equipped with multiple Ca(2+) channels to mediate Ca(2+)-dependent functions. We examined directly the role of Cav1.3...