Dževad Belkić’s research while affiliated with Karolinska University Hospital and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (158)


In vitro proton MRS for samples of malignant ovarian cyst fluid from a patient. Signal processing is performed using the average of the 128 time signals encoded with water suppression at a Bruker 600 MHz (B0≈14.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_0\approx 14.1$$\end{document}T) spectrometer [16]. The magnitude spectra are for the frequency band (4.6-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}5.1 ppm) around the water residual structure and the unknown quartet U:q. The lineshapes profiles are from the FFT with m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} (a), the unoptimized dFFT with m=5-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=5-20$$\end{document} (a–d) and the optimized dFFT with m=1-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1-20$$\end{document} (e–h). Ordinates (spectral intensities) are in arbitrary units (au) and abscissae (chemical shifts) are in parts per million (ppm). For details, see the accompanying text (color online)
In vitro proton MRS for samples of benign ovarian cyst fluid from a patient. Signal processing is performed using the average of the 128 time signals encoded with water suppression at a Bruker 600 MHz (B0≈14.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_0\approx 14.1$$\end{document}T) spectrometer [16]. The magnitude spectra are for the frequency band (4.6-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}5.1 ppm) around the water residual structure, including the two unknown resonances, singlet U:s and doublet U:d. The lineshapes profiles are from the FFT with m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} (a), the unoptimized dFFT with m=5-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=5-20$$\end{document} (a-d) and the optimized dFFT with m=1-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1-20$$\end{document} (e-h). Ordinates (spectral intensities) are in arbitrary units (au) and abscissae (chemical shifts) are in parts per million (ppm). For details, see the accompanying text (color online)
In vitro proton MRS for ovarian cyst fluid samples (malignant: left column and benign: right column) from patients. Signal processing is performed using the average of the 128 time signals encoded with water suppression at a Bruker 600 MHz (B0≈14.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_0\approx 14.1$$\end{document}T) spectrometer [16]. The magnitude spectra are for the frequency band (4.6-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}5.1 ppm) around the water residual structure. Threin, also present is the unknown quartet U:q for the malignant sample (a–d). For the benign sample (e–h), there are two unknown resonances, a singlet U:s and a doublet U:d. The lineshapes profiles are from the FFT with m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} (a, e) and the optimized dFFT with m=5-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=5-20$$\end{document} (a–h). Ordinates (spectral intensities) are in arbitrary units (au) and abscissae (chemical shifts) are in parts per million (ppm). For details, see the accompanying text (color online)
In vitro proton MRS for samples of malignant ovarian cyst fluid from a patient. Signal processing is performed using the average of the 128 time signals encoded with water suppression at a Bruker 600 MHz (B0≈14.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_0\approx 14.1$$\end{document}T) spectrometer [16]. The magnitude spectra are for the frequency band (4.28-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}4.51 ppm) around the lactate quartet Lac:q accompanied by the doublets of tyrosine Tyr:d and threonine Thr:d as well as the creatinine singlet Crn:s). The lineshape profiles are from the FFT with m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} (a), the unoptimized dFFT with m=5-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=5-20$$\end{document} (a–d) and the optimized dFFT with m=1-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1-20$$\end{document} (e–h). Ordinates (spectral intensities) are in arbitrary units (au) and abscissae (chemical shifts) are in parts per million (ppm). For details, see the accompanying text (color online)
In vitro proton MRS for samples of malignant ovarian cyst fluid from a patient. Signal processing is performed using the average of the 128 time signals encoded with water suppression at a Bruker 600 MHz (B0≈14.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_0\approx 14.1$$\end{document}T) spectrometer [16]. The magnitude spectra are for the frequency band (1.2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}1.56 ppm) around the lactate doublet Lac:d alongside the doublets of alanine Ala:d, threonine Thr:d and β-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta -$$\end{document}hydroxybutyrate β-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta -$$\end{document}HB:d. The lineshape profiles are from the FFT with m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} (a), the unoptimized dFFT with m=10-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=10-20$$\end{document} (b–d) and the optimized dFFT with m=1-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1-20$$\end{document} (e-h). Ordinates (spectral intensities) are in arbitrary units (au) and abscissae (chemical shifts) are in parts per million (ppm). For details, see the accompanying text (color online)
Steady spectra of supreme resolution and lowest noise in high-order optimized derivative fast Fourier transform for ovarian NMR spectroscopy
  • Article
  • Full-text available

June 2024

·

16 Reads

Journal of Mathematical Chemistry

Dževad Belkić

·

Karen Belkić

The optimized derivative fast Fourier transform (dFFT) simultaneously increases resolution and reduces noise in spectra reconstructed from encoded time signals. The pertinent applications have recently been published for time signals encoded with and without water suppression by in vitro and in vivo magnetic resonance spectroscopy (MRS). Even with the employed lower derivative orders, genuine resonances were narrowed, their intensities enhanced and the background baselines flattened. This unequivocally separated many overlapped peaks that are the thorniest problem in data analysis by signal processing. However, it has been common knowledge that higher-order derivative spectra quickly deteriorate with the increased derivative order. The optimized dFFT can challenge such findings. An unprecedented resilience of this processor to derivative-induced distortions is presently demonstrated for high derivative orders (up to 20). The salient illustrations are given for the water residual, lactate quartet and lactate doublet alongside their close surroundings. These applications of diagnostic relevance for patients with cancer are reported for time signals encoded with water suppression by in vitro proton MRS of human ovary.

Download

Cross section sensitivity to perturbation strengths in distorted waves for double electron capture by alpha particles from helium targets

April 2024

·

13 Reads

·

1 Citation

Journal of Mathematical Chemistry

Computer experiments are performed on total cross sections for capture of both electrons from helium targets at 100-10000 keV. Employed are four quantum-mechanical perturbative four-body distorted wave methods (one of the first and three of the second order). The goal is to determine the cross section sensitivity to the perturbation strengths in distorted waves from the second-order methods. The perturbation strength is parametrized by the Sommerfeld factor (the quotient of the nuclear charge and the relative velocity of the colliding particles). At each fixed impact energy, the sought sensitivity is monitored by gradually modifying the nuclear charges in the Sommerfeld factors. These factors reside in the Coulomb distortions of the unperturbed channels states. The focus is on the electronic distortions through the eikonal Coulomb logarithmic phases and the full Coulomb waves. The logarithmic phases are the constituents of the compound phases for the net charges of the two heavy scattering aggregates in relative motions. A striking perturbation strength sensitivity of the obtained total cross sections is recorded.


In vivo MRS for white matter in the brain of a 25 year old healthy male volunteer. Multiple time signals or FIDs have been encoded with and without water suppression by single-voxel in vivo proton MRS at a GE clinical scanner (1.5T). The acquisition parameters were: N=512\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=512$$\end{document}, NEX = 128, BW = 1000 Hz, τ=1ms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =1\, \textrm{ms}$$\end{document}, TR = 2000 ms and TE = 272 ms. The encoded raw 128 FIDs were averaged. The averaged FIDs (a, b; e, f) are not zero-filled, nor modified in any other way (no multiplying weight function, no phasing, no eddy current corrections, etc.). The FFT magnitude spectra (c, d) and (g, h) are for the averaged FIDs that are, however, extrapolated to 2N by one zero filling. The spectral intensities on the ordinates are in arbitrary units (au). Resonance frequencies (chemical shifts) on the abscissae are in dimensionless units, parts per million (ppm). For details, see the text
Single-voxel in vivo proton MRS for white matter in the brain of a 25 year old healthy male volunteer. For spectra, the averaged values of the encoded 128 FIDs are used. Nonderivative (m=0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m=0)$$\end{document} and derivative (m>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m>0)$$\end{document} magnitude spectra for the water-unsuppressed and water-suppressed zero-filled FIDs are on panels (a-d) and (e-h) in the left and right columns, respectively. The FFT spectra (a, e) with m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} are with no filtering. The optimized dFFT spectra (b-d; f-h) with the derivative orders 1≤m≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le m\le 3$$\end{document} are normalized and refer to the adaptive power-Gaussian filter, the APGF, for the damping parameter α2=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2=5$$\end{document}. The spectral intensities on the ordinates are in arbitrary units (au). Resonance frequencies (chemical shifts) on the abscissae are in dimensionless units, parts per million (ppm). For details, see the text
Single-voxel in vivo proton MRS for white matter in the brain of a 25 year old healthy male volunteer. For spectra, the averaged values of the encoded 128 FIDs are used. Nonderivative (m=0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m=0)$$\end{document} and derivative (m>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m>0)$$\end{document} magnitude spectra for the water-unsuppressed and water-suppressed zero-filled FID are on panels (a-d) and (e-h) in the left and right columns, respectively. The FFT spectra (a, e) with m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} are with no filtering. The optimized dFFT spectra (b-d; f-h) with the derivative orders 1≤m≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le m\le 3$$\end{document} are normalized and refer to the adaptive power-exponential filter, the APEF, for the damping parameter α1=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1=3$$\end{document}. The spectral intensities on the ordinates are in arbitrary units (au). Resonance frequencies (chemical shifts) on the abscissae are in dimensionless units, parts per million (ppm). For details, see the text
Single-voxel in vivo proton MRS for white matter in the brain of a 25 year old healthy male volunteer. For spectra, the averaged value of the encoded 128 FIDs is used. Nonderivative (m=0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m=0)$$\end{document} and derivative (m>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m>0)$$\end{document} magnitude spectra are for the water-unsuppressed zero-filled FID. The FFT spectrum (a) with m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} is with no filtering. The optimized dFFT (b-f) with the single derivative order m=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=3$$\end{document} are normalized and refer to the adaptive power-Gaussian filter, the APGF, for five damping parameters α1=1.75,2.0,2.25,2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1=1.75, \,2.0, \,2.25, \, 2.5$$\end{document} and 5.0. The spectral intensities on the ordinates are in arbitrary units (au). Resonance frequencies (chemical shifts) on the abscissae are in dimensionless units, parts per million (ppm). For details, see the text
Single-voxel in vivo proton MRS for white matter in the brain of a 25 year old healthy male volunteer. For spectra, the averaged value of the encoded 128 FIDs is used. Nonderivative (m=0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m=0)$$\end{document} and derivative (m>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m>0)$$\end{document} magnitude spectra are for the water-suppressed zero-filled FID. The FFT spectra with m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document} in the quasi-absorptive (a) and magnitude (e) modes are with no filtering. The real part (a) of the complex FFT spectrum is for the complex zero-order phase-corrected FID, which is multiplied by eiφ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{e}^{i\varphi _0}$$\end{document}, where φ0=80∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _0=80^\circ $$\end{document} (or 1.3963 rad). The optimized dFFT spectra (b-d; f-h) in the magnitude mode alone with the derivative orders 1≤m≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le m\le 3$$\end{document} refer to the adaptive power-exponential filter, the APEF, for two damping parameters α1=1.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1=1.5$$\end{document} and 3.0. The spectral intensities on the ordinates are in arbitrary units (au). Resonance frequencies (chemical shifts) on the abscissae are in dimensionless units, parts per million (ppm). For details, see the text
In vivo brain MRS at a 1.5T clinical scanner: Optimized derivative fast Fourier transform for high-resolution spectra from time signals encoded with and without water suppression

March 2024

·

27 Reads

·

1 Citation

Journal of Mathematical Chemistry

We study single-voxel in vivo proton magnetic resonance spectroscopy (MRS) of white matter in the brain of a 25 year old healthy male volunteer. The free induction decay (FID) data of short length (0.5KB) are encoded at a long echo time (272 ms) with and without water suppression at a clinical scanner of a weak magnetic field (1.5T). For these FIDs, the fast Fourier transform (FFT) gives sparse, rough and metabolically uninformative spectra. In such spectra, resolution and signal to noise ratio (SNR) are poor. Exponential or Gaussian filters applied to the FIDs can improve SNR in the FFT spectra, but only at the expense of the worsened resolution. This impacts adversely on in vivo MRS for which both resolution and SNR of spectra need to be very good or excellent, without necessarily resorting to stronger magnetic fields. Such a long sought goal is at last within reach by means of the optimized derivative fast Fourier transform (dFFT), which dramatically outperforms the FFT in every facet of signal estimations. The optimized dFFT simultaneously improves resolution and SNR in derivative spectra. They are presently shown to be of comparably high quality irrespective of whether water is suppressed or not in the course of FID encodings. The ensuing benefits of utmost relevance in the clinic include a substantial shortening of the patient examination time. The implied significantly better cost-effectiveness should make in vivo MRS at low-field clinical scanners (1.5T) more affordable to ever larger circles of hospitals worldwide.


Total cross sections Q(cm2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(\textrm{cm}^2)$$\end{document} versus impact energy E(keV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\textrm{keV})$$\end{document} for double capture in the α-He\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\textrm{He}$$\end{document} collisions. The dashed and full curves are the present theoretical data from the CDW-3B-IPM for process (75). Both curves describe the final ground state of helium by the one-parameter wave function of Hylleraas [57]. As to the wave function of the initial ground state of helium, the full and dashed curves are for the one-parameter single configuration of Hylleraas [57] and the RHF five-parameter multi-configuration of Clementi and Roetti [61], respectively. Experimental data are for process (75): □\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document} [41] (JET, Joint European Torus, within the ITER, International Thermonuclear Experimental Reactor), ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} [42] (COLTRIMS, cold target recoil ion momentum spectroscopy) and for process (76): ∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} [42]. For details, see the main text (color online)
Total cross sections Q(cm2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(\textrm{cm}^2)$$\end{document} versus impact energy E(keV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\textrm{keV})$$\end{document} for double capture in the α-He\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\textrm{He}$$\end{document} collisions. The present theoretical results are for process (75) for which the initial and final ground state helium wave functions are represented by the one-parameter single configurations of Hylleraas [57]: SDS-4B (curves A, B), CDW-4B (curve C) and CDW-3B-IPM (curve D). For process (75), the only experimental result plotted here is that of Zastrow et al. [41]. All the remaining measured cross sections are for capture into any final bound non-autoionizing state of helium. Experimental data: ⊞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boxplus $$\end{document} [41], ★\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigstar $$\end{document} [42]. ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lozenge $$\end{document} [43], △\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartriangle $$\end{document} [44], ▿\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangledown $$\end{document} [45], ▪\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacksquare $$\end{document} [46], ▴\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangle $$\end{document} [47], ▾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangledown $$\end{document} [48], ⧫\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacklozenge $$\end{document} [49], ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} [50], ◀\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangleleft $$\end{document} [51], ◃\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleleft $$\end{document} [52], ▹\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleright $$\end{document} [53], ⊕\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\oplus $$\end{document} [54], □\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document} [55], ∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} [56], For details, see the main text (color online)
Quantum-mechanical four-body versus semi-classical three-body theories for double charge exchange in collisions of fast alpha particles with helium targets

December 2023

·

11 Reads

·

1 Citation

Journal of Mathematical Chemistry

Within the two-channel distorted wave second-order perturbative theoretical formalism, we study capture of both electrons from helium-like targets by heavy nuclei as projectiles at intermediate and high impact energies. The emphasis is on the four-body single-double scattering (SDS-4B) method and the three-body continuum distorted wave impact parameter method (CDW-3B-IPM). The SDS-4B method deals with the full quantum-mechanical correlative dynamics of all the four interactively participating particles (two electrons, two nuclei). The CDW-3B-IPM is a semi-classical three-body independent particle model (one electron, two nuclei), using a combinatorial calculus to describe double capture by a product of two uncorrelated probabilities, integrated over impact parameters. Both theories share a common feature in having altogether two electronic full Coulomb continuum wave functions. One such function is centered on the projectile nucleus in the entrance channel, whereas the other is centered on the target nucleus in the exit channel. These two methods satisfy the correct initial and final Coulomb boundary conditions in the asymptotic region of scattering, at infinitely large inter-particle separations. Yet, it is presently demonstrated that most of the available experimental data on total cross sections for the double capture from helium by alpha particles distinctly favor the SDS-4B method. This is especially true at intermediate energies. Such energies are critically important in versatile applications under the general umbrella of ion transport in matter, including thermonuclear fusion (plasma physics) and ion therapy (medicine).


In vitro proton MRS and dMRS for samples of human biofluids: malignant ovarian cyst (serous cystadenocarcinoma) from a patient. The input time signal is the average of 128 FID transients encoded at a Bruker 600 MHz (≈14.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 14.1$$\end{document}T) spectrometer [30]. In a narrow band with the citrate quartet as a potential cancer biomarker for the ovary, the focus is on the derivative fast Fourier transform, the dFFT: optimized versus unoptimized. Unnormalized nonderivative FFT (m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document}) using (7) as: (a) Real part mode and (b) magnitude mode. Panels (c-h): normalized derivative spectra (m=1-5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1-5$$\end{document}) in the magnitude mode. Optimized dFFT using (1) for the APEF (2) with α=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =3$$\end{document} in (3): m=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1$$\end{document} (c), m=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document} (d), m=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=3$$\end{document} (e), m=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=4$$\end{document} (f) and m=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=5$$\end{document} (g). Unoptimized dFFT using (7): m=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=5$$\end{document} (h). The spectral intensities on the ordinates are in arbitrary units (au). Resonance frequencies (chemical shifts) on the abscissae are dimensionless units, parts per million (ppm). For details, see the text (color online)
In vitro proton MRS and dMRS for samples of human biofluids: malignant ovarian cyst (serous cystadenocarcinoma) from a patient. The input time signal is the average of 128 FID transients encoded at a Bruker 600 MHz (≈14.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 14.1$$\end{document}T) spectrometer [30]. In a narrow band with the choline compounds as recognized cancer biomarkers for the ovary, the focus is on the derivative fast Fourier transform, the dFFT: optimized versus unoptimized. Unnormalized nonderivative FFT (m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document}) using (7) as: (a) Real part mode and (b) magnitude mode. Panels (c-h): normalized derivative spectra (m=1-5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1-5$$\end{document}) in the magnitude mode. Optimized dFFT using (1) for the APEF (2) with α=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =3$$\end{document} in (3): m=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1$$\end{document} (c), m=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document} (d), m=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=3$$\end{document} (e), m=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=4$$\end{document} (f) and m=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=5$$\end{document} (g). Unoptimized dFFT using (7): m=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=5$$\end{document} (h). The spectral intensities on the ordinates are in arbitrary units (au). Resonance frequencies (chemical shifts) on the abscissae are dimensionless units, parts per million (ppm). For details, see the text (color online)
Optimized derivative fast Fourier transform with high resolution and low noise from encoded time signals: Ovarian NMR spectroscopy

December 2023

·

13 Reads

·

2 Citations

Journal of Mathematical Chemistry

The unfiltered derivative fast Fourier transform (dFFT) of degrees higher than two fails flagrantly for encoded time signals. These data are always dominated by noise at larger times of encodings. Such a breakdown is due to processing the unweighted product of the time signal and the time power function. The latter is generated by the frequency derivative operator applied to the fast Fourier transform (FFT). As a result, the unfiltered dFFT cannot separate the overlapped resonances and it dramatically decreases signal-to-noise ratio (SNR) relative to the FFT. This problem is solved by a derivative-adapted optimization with the properly attenuated filters. The ensuing optimized dFFT achieves the long sought simultaneous enhancement of both resolution and SNR. It uncovers the genuine resonances hidden within overlapping peaks to enable quantitative interpretations. It does not impose any model on the input time signals nor on the output lineshape in the spectra. It is computationally expedient as it uses the Cooley-Tukey fast algorithm. The present applications deal with time signals encoded by in vitro NMR spectroscopy from human malignant ovarian cyst fluid. A remarkably successful performance of the optimized dFFT is demonstrated for reconstructed spectra of potentially added value in clinical decision-making.


Total cross sections Q(cm2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(\textrm{cm}^2)$$\end{document} versus impact energy E(keV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\textrm{keV})$$\end{document} for single capture, SC (top), and double capture, DC (bottom), in the α-He\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\textrm{He}$$\end{document} collisions. Theories (the prior form) are for the initial and final ground states. This is the case only in two measurements on DC: Zastrow et al. [23] (JET) and Schöffler et al. [24] (COLTRIMS). All the remaining measured cross sections on SC and DC are for capture into any final bound state. For the ground-state helium wave functions, the theories employ the correlated closed-shell orbitals (1s1s′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1s1s')$$\end{document} of Silverman et al [39] for SC in the entrance channel and the uncorrelated open-shell orbitals (1s1s) of Hylleraas [22] for DC in the entrance as well as exit channels. Experimental data: SC (top) ▴\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangle $$\end{document} [25], ◃\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleleft $$\end{document} [26], ▿\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangledown $$\end{document} [40], ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} [41], ▹\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleright $$\end{document} [42], □\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document} [27], △\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartriangle $$\end{document} [43], ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lozenge $$\end{document} [44]. DC (bottom): ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lozenge $$\end{document} [25], △\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartriangle $$\end{document} [26], ▿\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangledown $$\end{document} [42], ▪\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacksquare $$\end{document} [27], ▴\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangle $$\end{document} [28], ▾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangledown $$\end{document} [29], ⧫\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacklozenge $$\end{document} [30], ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} [31], ◀\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangleleft $$\end{document} [32], ◃\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleleft $$\end{document} [33], ▹\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleright $$\end{document} [34], ⊕\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\oplus $$\end{document} [35], □\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document} [36], ∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} [37], ⊞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boxplus $$\end{document} [23], ★\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigstar $$\end{document} [24]. For details, see the main text (color online)
Total cross sections Q(cm2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(\textrm{cm}^2)$$\end{document} versus impact energy E(keV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\textrm{keV})$$\end{document} for double capture, DC, in the α-He\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\textrm{He}$$\end{document} collisions. Theories are for the initial and final ground states of helium. This is the case only in two measurements: Zastrow et al. [23] (JET) and Schöffler et al. [24] (COLTRIMS). All the remaining measured cross sections are for capture into any final helium bound state. For the ground-state helium wave functions, the theories employ the uncorrelated open-shell orbitals (1s1s) of Hylleraas [22] in the entrance and exit channels. The CB1-4B, CDW-4B, BCIS-4B and BDW-4B methods are in the prior forms, whereas the CDW-EIS-4B method is in the post form. Experimental data: ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lozenge $$\end{document} [25], △\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartriangle $$\end{document} [26], ▿\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangledown $$\end{document} [42], ▪\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacksquare $$\end{document} [27], ▴\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangle $$\end{document} [28], ▾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangledown $$\end{document} [29], ⧫\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacklozenge $$\end{document} [30], ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} [31], ◀\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangleleft $$\end{document} [32], ◃\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleleft $$\end{document} [33], ▹\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleright $$\end{document} [34], ⊕\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\oplus $$\end{document} [35], □\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document} [36], ∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} [37], ⊞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boxplus $$\end{document} [23], ★\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigstar $$\end{document} [24]. For details, see the main text
Total cross sections Q(cm2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(\textrm{cm}^2)$$\end{document} versus impact energy E(keV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\textrm{keV})$$\end{document} for single capture, SC (top), and double capture, DC (bottom), in the α-He\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\textrm{He}$$\end{document} collisions. Theories (the prior form) are for the uncorrelated open-shell ground-state orbitals (1s1s) of Hylleraas [22] in SC (entrance channel) and DC (entrance and exit channels). Computations performed with and without potential VP,2=2(1/R-1/s2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\textrm{P,2}} =2(1/R-1/s_2)$$\end{document} from the complete interaction in the perturbation potential operator: VP,2-∇x1lnφiT·∇s1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\textrm{P,2}}-\varvec{\nabla }_{x_1}\ln \varphi ^{\textrm{T}}_i\cdot \varvec{\nabla }_{s_1}.$$\end{document} In SC, potential VP,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\textrm{P,2}}$$\end{document} describes indirect capture of active electron e1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_1$$\end{document} by way of the interaction between the projectile nucleus P with the non-transferred electron e2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_2.$$\end{document} For details, see the main text
Total cross sections Q(cm2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(\textrm{cm}^2)$$\end{document} versus impact energy E(keV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\textrm{keV})$$\end{document} for single capture, SC (top), and double capture, DC (bottom), in the α-He\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\textrm{He}$$\end{document} collisions. Theories (the prior form) are for the initial and final ground states. This is the case only in two measurements on DC: Zastrow et al. [23] (JET) and Schöffler et al. [24] (COLTRIMS). All the remaining measured cross sections on SC and DC are for capture into any final bound state. For the ground-state helium wave functions, the uncorrelated open-shell orbitals (1s1s) of Hylleraas [22] are employed in the CDW-4B method (SC, entrance channel) as well as in the SDS-4B and CDW-4B methods (DC, entrance and exit channels). Experimental data: SC (top) ▴\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangle $$\end{document} [25], ◃\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleleft $$\end{document} [26], ▿\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangledown $$\end{document} [40], ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} [41], ▹\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleright $$\end{document} [42], □\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document} [27], △\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartriangle $$\end{document} [43], ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lozenge $$\end{document} [44]. DC (bottom): ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lozenge $$\end{document} [25], △\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartriangle $$\end{document} [26], ▿\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangledown $$\end{document} [42], ▪\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacksquare $$\end{document} [27], ▴\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangle $$\end{document} [28], ▾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangledown $$\end{document} [29], ⧫\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacklozenge $$\end{document} [30], ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} [31], ◀\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangleleft $$\end{document} [32], ◃\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleleft $$\end{document} [33], ▹\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleright $$\end{document} [34], ⊕\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\oplus $$\end{document} [35], □\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document} [36], ∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} [37], ⊞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boxplus $$\end{document} [23], ★\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigstar $$\end{document} [24]. For details, see the main text
Total cross sections Q(cm2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(\textrm{cm}^2)$$\end{document} versus impact energy E(keV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\textrm{keV})$$\end{document} for double capture, DC, in the α-He\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\textrm{He}$$\end{document} collisions. Theories (the prior form) are for the initial and final ground states of helium. This is the case only in two measurements: Zastrow et al. [23] (JET) and Schöffler et al. [24] (COLTRIMS). All the remaining measured cross sections are for capture into any final helium bound state. For the ground-state helium wave functions, the theories employ the uncorrelated open-shell orbitals (1s1s) of Hylleraas [22] in the entrance and exit channels. Experimental data: ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lozenge $$\end{document} [25], △\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartriangle $$\end{document} [26], ▿\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangledown $$\end{document} [42], ▪\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacksquare $$\end{document} [27], ▴\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangle $$\end{document} [28], ▾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangledown $$\end{document} [29], ⧫\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacklozenge $$\end{document} [30], ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} [31], ◀\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\blacktriangleleft $$\end{document} [32], ◃\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleleft $$\end{document} [33], ▹\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangleright $$\end{document} [34], ⊕\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\oplus $$\end{document} [35], □\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document} [36], ∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} [37], ⊞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boxplus $$\end{document} [23], ★\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigstar $$\end{document} [24]. For details, see the main text
Various mechanisms for double capture from helium targets by alpha particles

August 2023

·

15 Reads

·

3 Citations

Journal of Mathematical Chemistry

An analysis is presented using six quantum-mechanical four-body distorted wave (DW) theories for double capture (DC) in ion-atom collisions at intermediate and high energies. They all satisfy the correct boundary conditions in the entrance and exit channels. This implies the usage of short-range perturbation potentials in compliance with the exact behaviors of scattering wave functions at infinitely large separations of particles. Specifically, total cross sections Q are analyzed for collisions of alpha particles with helium targets. Regarding the relative quantitative performance of the studied DW theories at different impact energies E, our main focus is on the sensitivity of Q to various collisional mechanisms. The usual mechanism in most DW theories assumes that both electrons undergo the same type of collisions with nuclei. These are either single or double collisions in one or two steps, respectively, per channel, but without their mixture in either channel. The signatures of double collisions in differential cross sections are the Thomas peaks. By definition, these cannot be produced by single collisions. There is another DC pathway, which is actually favored by the existing experimental data. It is a hybrid, two-center mechanism which, in each channel separately, combines a single collision for one electron with a double collision for the other electron. The ensuing DW theory is called the four-body single-double scattering (SDS-4B) method. It appears that this mechanism in the SDS-4B method is more probable than double collisions for each electron in both channels predicted by the four-body continuum distorted wave (CDW-4B) method. This is presently demonstrated for Q at energies E=[200,8000] keV in DC exemplified by alpha particles colliding with helium targets.


Derivative shape estimations with resolved overlapped peaks and reduced noise for time signals encoded by NMR spectroscopy with and without water suppression

July 2023

·

34 Reads

·

3 Citations

Journal of Mathematical Chemistry

Derivative estimation in magnetic resonance spectroscopy (MRS) possesses several attractive features. It has the ability to enhance the inaccessible spectral details when time signals encoded by MRS are analyzed by nonderivative shape estimators. These unfolded subtle spectral features can be diagnostically relevant in differentiating between healthy and diseased tissues. Within the realm of shape estimators, the prerequisite for the success of MRS in the clinic is reliance upon accurate derivative signal processing. However, derivative processing of encoded time signals can be very challenging. The reason is that such spectra may suffer from severe numerical instabilities since even small perturbations (noise) in the input data could produce large errors in the predicted output data. Nevertheless, it is presently demonstrated that this obstacle can be surmounted by an adaptive optimization. The benefit is simultaneously increased resolution and reduced noise in quantitatively interpretable lineshapes. The illustrative spectra are reconstructed from time signals encoded by proton MRS with and without water suppression.



Cross sections for single-electron capture from heliumlike targets by fast heavy nuclei

May 2023

·

26 Reads

·

2 Citations

Physical Review A

Single charge-exchange in collisions of heavy bare nuclei with the ground state of two-electron atomic targets is described perturbatively as a four-body problem. The employed four-body boundary-corrected continuum intermediate state (BCIS-4B) method considers the correlated and uncorrelated target wave functions φi. A thorough examination is performed for the formation of any final hydrogen-like nlm state of the captured electron. For arbitrary projectile and target nuclear charges, the nine-dimensional integral in the transition amplitude is reduced to a two-dimensional numerical quadrature. The general analysis is applied to one-electron capture by protons from helium targets beginning with the lower edge (10 keV) of intermediate energies and extending to the higher (12.5 MeV) domain. These include the main peaks (Massey, Thomas) due to single and double scattering, respectively. The results encompass over 70 state-selective and state-summed cross sections (n≤6,0≤l≤n−1,−l≤m≤l). In comparison to measurements, the electronic correlations in φi greatly improve the overall performance of the BCIS-4B method around the Massey peak, below about 100 keV. Moreover, while largely outperforming the three-body boundary-corrected continuum intermediate state method, the cross sections in the BCIS-4B with the correlated φi compare excellently overall with the available experimental data at 10 to 12 500 keV. Hence, the BCIS-4B method, with its built-in two main capture mechanisms (one-step Massey and two-step Thomas) is capable of spanning impact energies covering three or more orders of magnitude at which the state-summed cross sections vary over 11 orders of magnitude.



Citations (78)


... The principal reason for utilizing derivative lineshapes is in the possibility for simultaneous improvements of resolution and signal to noise ratio (SNR), an unachievable goal in the FFT for encoded FIDs. The optimized derivative fast Fourier transform (dFFT) [44][45][46] can enhance both resolution and SNR at the same time. ...

Reference:

Steady spectra of supreme resolution and lowest noise in high-order optimized derivative fast Fourier transform for ovarian NMR spectroscopy
In vivo brain MRS at a 1.5T clinical scanner: Optimized derivative fast Fourier transform for high-resolution spectra from time signals encoded with and without water suppression

Journal of Mathematical Chemistry

... One of the goals of atomic collision physics within the fusion plasmas and other mentioned crossdisciplinary applications is to enhance the accuracy of the cross section data bases. The sought accuracy is especially missing for DC in both theory and measurements [27][28][29][30]. For DC, the existing quantum-mechanical four-body (4B) distorted wave perturbative theories are in large mutual disparity. ...

Quantum-mechanical four-body versus semi-classical three-body theories for double charge exchange in collisions of fast alpha particles with helium targets

Journal of Mathematical Chemistry

... The principal reason for utilizing derivative lineshapes is in the possibility for simultaneous improvements of resolution and signal to noise ratio (SNR), an unachievable goal in the FFT for encoded FIDs. The optimized derivative fast Fourier transform (dFFT) [44][45][46] can enhance both resolution and SNR at the same time. ...

Optimized derivative fast Fourier transform with high resolution and low noise from encoded time signals: Ovarian NMR spectroscopy

Journal of Mathematical Chemistry

... One of the goals of atomic collision physics within the fusion plasmas and other mentioned crossdisciplinary applications is to enhance the accuracy of the cross section data bases. The sought accuracy is especially missing for DC in both theory and measurements [27][28][29][30]. For DC, the existing quantum-mechanical four-body (4B) distorted wave perturbative theories are in large mutual disparity. ...

Various mechanisms for double capture from helium targets by alpha particles

Journal of Mathematical Chemistry

... The principal reason for utilizing derivative lineshapes is in the possibility for simultaneous improvements of resolution and signal to noise ratio (SNR), an unachievable goal in the FFT for encoded FIDs. The optimized derivative fast Fourier transform (dFFT) [44][45][46] can enhance both resolution and SNR at the same time. ...

Derivative shape estimations with resolved overlapped peaks and reduced noise for time signals encoded by NMR spectroscopy with and without water suppression

Journal of Mathematical Chemistry

... Various DW choices for DC for the studied problem yield the values of Q that unexpectedly deviate even by 1-3 orders of magnitude from the experimental data above 200 keV. This runs contrary to the well-documented reliability of these theories on Q in single capture (SC) for the same colliding particles [2][3][4][5][6][7][8]. ...

Cross sections for single-electron capture from heliumlike targets by fast heavy nuclei
  • Citing Article
  • May 2023

Physical Review A

... One of the goals of atomic collision physics within the fusion plasmas and other mentioned crossdisciplinary applications is to enhance the accuracy of the cross section data bases. The sought accuracy is especially missing for DC in both theory and measurements [27][28][29][30]. For DC, the existing quantum-mechanical four-body (4B) distorted wave perturbative theories are in large mutual disparity. ...

High-energy two-electron transfer in ion-atom collisions

Journal of Mathematical Chemistry

... Therefore, with the increased derivative order m, mostly noise is processed by the dFFT. This leads to information loss with a consequence of worsening both resolution and SNR [53][54][55][56][57][58][59][60][61][62][63][64][65][66][67]. ...

Inverse problem for reconstruction of components from derivative envelope in ovarian MRS: Citrate quartet as a cancer biomarker with considerably decreased levels in malignant vs benign samples

Journal of Mathematical Chemistry

... These two formalisms satisfy the correct boundary conditions in both the entrance and exit channels of their respective three-body or four-body problems. The theoretical basis of the necessity to take into account the correct boundary conditions for twoelectron charge-exchange is well-known [1][2][3][4][5][6][7][8]. Earlier [9][10][11], the importance of these conditions has conclusively been established for one-electron capture. ...

Distorted wave theories with correct boundary conditions for double charge exchange in ion-atom collisions at intermediate and high energies
  • Citing Chapter
  • October 2022

Advances in Quantum Chemistry

... Therefore, with the increased derivative order m, mostly noise is processed by the dFFT. This leads to information loss with a consequence of worsening both resolution and SNR [53][54][55][56][57][58][59][60][61][62][63][64][65][66][67]. ...

Derivative NMR spectroscopy for J-coupled resonances in analytical chemistry and medical diagnostics
  • Citing Chapter
  • August 2021

Advances in Quantum Chemistry