Dorian S. Abbot's research while affiliated with University of Chicago and other places

Publications (140)

Preprint
Full-text available
Extreme weather events have significant consequences, dominating the impact of climate on society, but occur with small probabilities that are inherently difficult to compute. A rare event with a 100-year return period takes, on average, 100 years of simulation time to appear just once. Computational constraints limit the resolution of models used...
Article
Full-text available
The influence of atmospheric composition on the climates of present‐day and early Earth has been studied extensively, but the role of ocean composition has received less attention. We use the ROCKE‐3D ocean‐atmosphere general circulation model to investigate the response of Earth's present‐day and Archean climate system to low versus high ocean sal...
Preprint
Full-text available
The influence of atmospheric composition on the climates of present-day and early Earth has been studied extensively, but the role of ocean composition has received less attention. We use the ROCKE-3D ocean-atmosphere general circulation model to investigate the response of Earth's present-day and Archean climate system to low vs. high ocean salini...
Preprint
Full-text available
During the summer, vast regions of Arctic sea ice are covered by meltwater ponds that significantly lower the ice reflectivity and accelerate melting. Ponds develop over the melt season through an initial rapid growth stage followed by drainage through macroscopic holes. Recent analysis of melt pond photographs indicates that late-summer ponds exis...
Preprint
Full-text available
Our ability to predict the future of Arctic sea ice is limited by ice's sensitivity to detailed surface conditions such as the distribution of snow and melt ponds. Snow on top of the ice decreases ice's thermal conductivity, increases its reflectivity (albedo), and provides a source of meltwater for melt ponds during summer that decrease the ice's...
Article
Hot Jupiters are tidally locked gaseous exoplanets with atmospheric circulations dominated by a superrotating equatorial jet. Their global circulation is often studied with simulations in 3D General Circulation Models (GCMs). Energy builds up at the smallest scales in these models and must be dissipated. Many models use ‘hyperdiffusion’ for this, w...
Article
Full-text available
A terrestrial planet’s rotation period is one of the key parameters that determines its climate and habitability. Current methods for detecting the rotation period of exoplanets are not suitable for terrestrial exoplanets. Here we demonstrate that, under certain conditions, the rotation period of an Earth-like exoplanet will be detectable using dir...
Article
Full-text available
Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercury’s orbit will become unstable in the future. Previous efforts have estimated the probability of this happening between 3 and 5 billion years in the future using a large number of direct numerical simulations with an N -body code, but were not able to obtain...
Article
Full-text available
The high computational cost of Global Climate Models (GCMs) is a problem that limits their use in many areas. Recently an inverse climate modeling (InvCM) method, which fixes the global mean sea surface temperature (SST) and evolves the CO2 mixing ratio to equilibrate climate, has been implemented in a cloud‐resolving model. In this article, we app...
Article
Rare events arising in nonlinear atmospheric dynamics remain hard to predict and attribute. We address the problem of forecasting rare events in a prototypical example, Sudden Stratospheric Warmings (SSWs). Approximately once every other winter, the boreal stratospheric polar vortex rapidly breaks down, shifting midlatitude surface weather patterns...
Preprint
Extreme weather events are simultaneously the least likely and the most impactful features of the climate system, increasingly so as climate change proceeds. Extreme events are multi-faceted, highly variable processes which can be characterized in many ways: return time, worst-case severity, and predictability are all sought-after quantities for va...
Preprint
Full-text available
Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercury's orbit will become unstable in the future. Previous efforts have estimated the probability of this happening between 3 and 5 billion years in the future using a large number of direct numerical simulations with an N-body code, but were not able to obtain...
Preprint
Nonlinear atmospheric dynamics produce rare events that are hard to predict and attribute due to many interacting degrees of freedom. Sudden stratospheric warming event is a model example. Approximately once every other year, the winter polar vortex in the boreal stratosphere rapidly breaks down, inducing a shift in midlatitude surface weather patt...
Preprint
A critical question in astrobiology is whether exoEarth candidates (EECs) are Earth-like, in that they originate life that progressively oxygenates their atmospheres similarly to Earth. We propose answering this question statistically by searching for O2 and O3 on EECs with missions such as HabEx or LUVOIR. We explore the ability of these missions...
Article
Full-text available
Our ability to predict the future of Arctic sea ice is limited by ice's sensitivity to detailed surface conditions such as the distribution of snow and melt ponds. Snow on top of the ice decreases ice's thermal conductivity, increases its reflectivity (albedo), and provides a source of meltwater for melt ponds during summer that decrease the ice's...
Preprint
A critical question in the search for extraterrestrial life is whether exoEarths are Earth-like, in that they host life that progressively oxygenates their atmospheres roughly following Earth's oxygenation history. This question could be answered statistically by searching for O$_2$ and O$_3$ on exoEarths detected by HabEx or LUVOIR. The point of t...
Article
Full-text available
During the summer, vast regions of Arctic sea ice are covered by meltwater ponds that significantly lower the ice reflectivity and accelerate melting. Ponds develop over the melt season through an initial rapid growth stage followed by drainage through macroscopic holes. Recent analysis of melt pond photographs indicates that late‐summer ponds exis...
Article
Hurricanes are one of the most extreme storm systems that occur on Earth, characterized by strong rainfall and fast winds. The terrestrial exoplanets that will be characterized with future infrared space telescopes orbit M dwarf stars. As a result, the best observable terrestrial exoplanets have vastly different climates from Earth, with a large da...
Preprint
Hurricanes are one of the most extreme storm systems that occur on Earth, characterized by strong rainfall and fast winds. The terrestrial exoplanets that will be characterized with future infrared space telescopes orbit M dwarf stars. As a result, the best observable terrestrial exoplanets have vastly different climates than Earth, with a large da...
Preprint
The potential habitability of tidally locked planets orbiting M-dwarf stars has been widely investigated in recent work, typically with a non-dynamic ocean and without continents. On Earth, ocean dynamics are a primary means of heat and nutrient distribution. Continents are a critical source of nutrients, strongly influence ocean dynamics, and part...
Preprint
Many rare weather events, including hurricanes, droughts, and floods, dramatically impact human life. To accurately forecast these events and characterize their climatology requires specialized mathematical techniques to fully leverage the limited data that are available. Here we describe \emph{transition path theory} (TPT), a framework originally...
Article
Full-text available
Liquid water oceans are at the center of our search for life on exoplanets because water is a strict requirement for life as we know it. However, oceans are dynamic habitats—and some oceans may be better hosts for life than others. In Earth’s ocean, circulation transports essential nutrients such as phosphate and is a first-order control on the dis...
Article
Many rare weather events, including hurricanes, droughts, and floods, dramatically impact human life. To accurately forecast these events and characterize their climatology requires specialized mathematical techniques to fully leverage the limited data that are available. Here we describe transition path theory (TPT), a framework originally develop...
Article
The Gaia hypothesis postulates that life regulates its environment to be favorable for its own survival. Most planets experience numerous perturbations throughout their lifetimes such as asteroid impacts, volcanism, and the evolution of their host star’s luminosity. For the Gaia hypothesis to be viable, life must be able to keep the conditions of i...
Article
The sensitivity of the climate to CO 2 forcing depends on spatially-varying radiative feedbacks which act both locally and nonlocally. We assess whether a method employing multiple regression can be used to estimate local and nonlocal radiative feedbacks from internal variability. We test this method on millennial-length simulations performed with...
Article
Full-text available
We are on the verge of characterizing the atmospheres of terrestrial exoplanets in the habitable zones of M dwarf stars. Due to their large planet-to-star radius ratios and higher frequency of transits, terrestrial exoplanets orbiting M dwarf stars are favorable for transmission spectroscopy. In this work, we quantify the effect that water clouds h...
Preprint
Full-text available
Robustly modeling the inner edge of the habitable zone is essential for determining the most promising potentially habitable exoplanets for atmospheric characterization. Global climate models (GCMs) have become the standard tool for calculating this boundary, but divergent results have emerged among the various GCMs. In this study, we perform an in...
Preprint
We are on the verge of characterizing the atmospheres of terrestrial exoplanets in the habitable zones of M dwarf stars. Due to their large planet-to-star radius ratios and higher frequency of transits, terrestrial exoplanets orbiting M dwarf stars are favorable for transmission spectroscopy. In this work, we quantify the effect that water clouds h...
Article
Full-text available
According to the Snowball Earth hypothesis, Earth has experienced periods of low‐latitude glaciation in its deep past. Prior studies have used general circulation models (GCMs) to examine the effects such an extreme climate state might have on the structure and dynamics of Earth's troposphere, but the behavior of the stratosphere has not been studi...
Preprint
Terrestrial planets orbiting within the habitable zones of M-stars are likely to become tidally locked in a 1:1 spin:orbit configuration and are prime targets for future characterization efforts. An issue of importance for the potential habitability of terrestrial planets is whether they could experience snowball events (periods of global glaciatio...
Preprint
Full-text available
According to the Snowball Earth hypothesis, Earth has experienced periods of low-latitude glaciation in its deep past. Prior studies have used general circulation models (GCMs) to examine the effects such an extreme climate state might have on the structure and dynamics of Earth's troposphere, but the behavior of the stratosphere has not been studi...
Preprint
Liquid water oceans are at the center of our search for life on exoplanets because water is a strict requirement for life as we know it. However, oceans are dynamic habitats--and some oceans may be better hosts for life than others. In Earth's ocean, circulation transports essential nutrients such as P and controls the distribution and productivity...
Preprint
The macroturbulent atmospheric circulation of Earth-like planets mediates their equator-to-pole heat transport. For fast-rotating terrestrial planets, baroclinic instabilities in the mid-latitudes lead to turbulent eddies that act to transport heat poleward. In this work, we derive a scaling theory for the equator-to-pole temperature contrast and b...
Preprint
Most rocky planets in the galaxy orbit a cool host star, and there is large uncertainty among theoretical models whether these planets can retain an atmosphere. The James Webb Space Telescope (JWST) might be able to settle this question empirically, but most proposals for doing so require large observational effort because they are based on spectro...
Preprint
The Gaia hypothesis postulates that life regulates its environment to be favorable for its own survival. Most planets experience numerous perturbations throughout their lifetimes such as asteroid impacts, volcanism, and the evolution of a star's luminosity. For the Gaia hypothesis to be viable, life must be able to keep the conditions of its host p...
Article
Extreme mesoscale weather, including tropical cyclones, squall lines, and floods, can be enormously damaging and yet challenging to simulate; hence, there is a pressing need for more efficient simulation strategies. Here, we present a new rare event sampling algorithm called quantile diffusion Monte Carlo (quantile DMC). Quantile DMC is a simple-to...
Preprint
Direct computer simulation of intense tropical cyclones (TCs) in weather models is limited by computational expense. Intense TCs are rare and have small-scale structures, making it difficult to produce large ensembles of storms at high resolution. Further, models often fail to capture the process of rapid intensification, which is a distinguishing...
Preprint
A rigorous definition of the habitable zone and its dependence on planetary properties is part of the search for habitable exoplanets. In this work, we use the general circulation model ExoCAM to determine how the inner edge of the habitable zone of tidally locked planets orbiting M dwarf stars depends on planetary radius, surface gravity, and surf...
Article
Full-text available
Robustly modeling the inner edge of the habitable zone is essential for determining the most promising potentially habitable exoplanets for atmospheric characterization. Global climate models (GCMs) have become the standard tool for calculating this boundary, but divergent results have emerged among the various GCMs. In this study, we perform an in...
Preprint
Extreme mesoscale weather, including tropical cyclones, squall lines, and floods, can be enormously damaging and yet challenging to simulate; hence, there is a pressing need for more efficient simulation strategies. Here we present a new rare event sampling algorithm called Quantile Diffusion Monte Carlo (Quantile DMC). Quantile DMC is a simple-to-...
Article
Full-text available
Direct computer simulation of intense tropical cyclones (TCs) in weather models is limited by computational expense. Intense TCs are rare and have small-scale structures, making it difficult to produce large ensembles of storms at high resolution. Further, models often fail to capture the process of rapid intensification, which is a distinguishing...
Preprint
Full-text available
While recently discovered exotic new planet-types have both challenged our imaginations and broadened our knowledge of planetary system workings, perhaps the most compelling objective of exoplanet science is to detect and characterize habitable and possibly inhabited worlds orbiting in other star systems. For the foreseeable future, characterizatio...
Preprint
Full-text available
Provided that sufficient resources are deployed, we can look forward to an extraordinary future in which we will characterize potentially habitable planets. Until now, we have had to base interpretations of observations on habitability hypotheses that have remained untested. To test these theories observationally, we propose a statistical comparati...
Article
Full-text available
The habitable zone (HZ) is the region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. The classical HZ definition makes a number of assumptions common to the Earth, including assuming that the most important greenhouse gases for habitable planets are CO2 and H2O, habitable planets orbit main-sequence st...
Preprint
The habitable zone (HZ) is the region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. The classical HZ definition makes a number of assumptions common to the Earth, including assuming that the most important greenhouse gases for habitable planets are CO2 and H2O, habitable planets orbit main-sequence st...
Preprint
Recent studies have shown that ocean dynamics can have a significant warming effect on the permanent night sides of 1 to 1 tidally locked terrestrial exoplanets with Earth-like atmospheres and oceans in the middle of the habitable zone. However, the impact of ocean dynamics on the habitable zone's boundaries (inner edge and outer edge) is still unk...
Article
The recent detections of temperate terrestrial planets orbiting nearby stars and the promise of characterizing their atmospheres motivate a need to understand how the diversity of possible planetary parameters affects the climate of terrestrial planets. In this work, we investigate the atmospheric circulation and climate of terrestrial exoplanets o...
Article
Recent studies have shown that ocean dynamics can have a significant warming effect on the permanent night sides of 1:1 tidally locked terrestrial exoplanets with Earth-like atmospheres and oceans in the middle of the habitable zone. However, the impact of ocean dynamics on the habitable zone boundaries (inner edge and outer edge) is still unknown...
Preprint
Full-text available
The recent detections of temperate terrestrial planets orbiting nearby stars and the promise of characterizing their atmospheres motivates a need to understand how the diversity of possible planetary parameters affects the climate of terrestrial planets. In this work, we investigate the atmospheric circulation and climate of terrestrial exoplanets...
Preprint
Full-text available
These notes contain everything necessary to run a flipped course on "The Atmosphere" at an introductory undergraduate level. There are notes for the students to read before each course meeting and problems for them to work on in small groups during course meetings. Topics include (1) atmospheric composition, structure, and thermodynamics; (2) solar...
Article
Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry...
Article
Full-text available
This is a white paper in response to the National Academy of Sciences "Exoplanet Science Strategy" call. We summarize recent advances in theoretical habitability studies and argue that such studies will remain important for guiding and interpreting observations. Interactions between 1-D and 3-D climate modelers will be necessary to resolve recent d...
Article
Full-text available
The ice-albedo feedback on rapidly-rotating terrestrial planets in the habitable zone can lead to abrupt transitions (bifurcations) between a warm and a snowball (ice-covered) state, bistability between these states, and hysteresis in planetary climate. This is important for planetary habitability because snowball events may trigger rises in the co...
Article
Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO 2 was 10 2 PAL (presen...
Article
Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems...
Article
Full-text available
The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All orbit nearby M-stars and are likely tidally locked in 1:1 spin-orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth...
Article
The search for habitable exoplanets and life beyond the Solar System is one of the most compelling scientific opportunities of our time. Nevertheless, the high cost of building facilities that can address this topic and the keen public interest in the results of such research requires the rigorous development of experiments that can deliver a defin...
Article
Full-text available
As the melt season progresses, sea ice in the Arctic often becomes permeable enough to allow for nearly complete drainage of meltwater that has collected on the ice surface. Melt ponds that remain after drainage are hydraulically connected to the ocean and correspond to regions of sea ice whose surface is below sea level. We present a simple model...
Article
Geochemical data from cap carbonates deposited above Cryogenian glacial deposits have been widely used to infer the conditions that prevailed in the aftermath of snowball Earth. However, the time scale over which these carbonates were deposited and the degree to which they record the chemistry of a globally well-mixed ocean have remained poorly con...
Article
Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld." On a planet with active tectonics, competing mechanisms act to regulate the abunda...
Article
An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as...
Article
The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO$_2$ outgassing rates are not large enough to maintain high CO$...
Article
Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with g...
Article
Full-text available
Late in the melt season, sea ice floes in the Arctic have been observed to exhibit a large range in melt pond coverage, from heavily ponded to almost pond free. Some of these observations are consistent with a bimodal distribution in pond coverage with few intermediately ponded ice floes. We present a model for the evolution of melt pon