July 2024
·
53 Reads
·
3 Citations
Nano-Structures & Nano-Objects
In this present study, a facile, sustainable, eco-friendly, and low-cost material was developed using synthesized graphene-oxide (SGO) incorporated with zinc oxide (SGO/ZnO) and its adsorptive performance was compared with commercial graphene oxide (CGO) and synthesized graphene-oxide (SGO) for the removal of fluoride ion from aqueous environment. The materials were characterized using techniques such as Fourier transform spectroscopy (FTIR), Scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), Zeta potentiometer, Brunauer-Emmett-Teller (BET) measurement, Transmission Electron Microscopy (TEM). The SEM analysis confirmed the existence of a spherical structure, smooth and agglomerated white particle in between the wrinkled GO sheet, demonstrating a successful synthesis of SGO/ZnO composite. The EDX analysis revealed the presence of carbon, zinc, and oxygen with no impurities. The successful incorporation of ZnO on SGO yielded a BET surface of 123 m 2 /g for SGO/ZnO, which is far greater than that of the separate SGO and ZnO with surface areas of 19 m 2 /g and 76 m 2 /g respectively. The batch studies revealed that the removal of fluoride ion by CGO, SGO, and SGO/ZnO was 89.4 %, 94.8 %, and 99.2 %. Also, the jovanovic isotherm model fitted well to the fluoride ion adsorption onto CGO, SGO, and SGO/ZnO suggesting a monolayer adsorption with mechanical contact possibility. The estimated adsorption capacities (Q max) were 105.64, 116.37, and 188.60 mg/g for CGO, SGO, and SGO/ZnO, respectively. In addition, the adsorption kinetics study showed that the pseudo-second-order kinetic model suits the adsorption model, indicating the presence of an ionic interaction between the adsorbent functional groups and the fluoride ion. The adsorption thermody-namic analysis indicates that the adsorption process was spontaneous, endothermic, with strong affinity between the adsorbate and adsorbents. Furthermore, the regenerability and reusability analysis showed that about 39.5 %, 49.9 %, and 70.6 % of fluoride ion on CGO, SGO, and SGO/ZnO was removed after fifth desorption-adsorption cycles, suggesting that the SGO/ZnO was more stable. The interaction mechanism between SGO/ ZnO and fluoride ion was governed primarily by pore-filling, hydrogen bonding, electrostatic attraction, and physical adsorption.